Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 6
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

Endocrine disrupting compounds (EDCs) have the potential to alter hormone pathways that regulate life processes in humans, vertebrates and invertebrates. Besides xcnobiotics having endocrine effects, there arc naturally occurring estrogenie compounds. The limited number of studies with EDCs in invertebrates is partially due to the fact that their hormonal systems are rather poorly understood in comparison with vertebrates. It is also important, but difficult to discriminate between hormone - mediated and other toxicological modes of action. Data of the potentially adverse impact of EDCs on wildlife species are reviewed.
Go to article

Authors and Affiliations

Maria Łebkowska
Monika Załęska-Radziwiłł
Download PDF Download RIS Download Bibtex

Abstract

In 1977 and 1980 rich materials of necrophagous invertebrates were collected in the Admiralty Bay of King George Island. The collecting was carried out in 9 stations differing with respect to their habitat conditions. The stations were established at depths ranging from 5 to 90 m. In baited traps placed in the stations 295074 specimens of various animals belonging to almost 100 taxa were caught. It was found that 23 species out of the above mentioned taxa were necrophagous, and 10 further species were suspected of necrophagy. On the basis of their specific composition and domination structure the summer and winter assemblages of necrophagous invertebrates were described and compared with each other. An analysis of spatial and seasonal changes in the structure and abundance of these assemblages was carried out. and the habitat preferences of particular species as well as a list of species displaying permanent or seasonal necrophagy were determinted. Three forms of the competitive community of necrophagous invertebrates were distinguished.

Go to article

Authors and Affiliations

Piotr Presler
Download PDF Download RIS Download Bibtex

Abstract

Despite great technological progress scientists still are not capable of ascertaining how many species are there on Earth. Systematic studies are not only time-consuming, but sometimes also significantly impeded by constraints of available equipment. One of the methods for morphology evaluation, which is gradually more often used for taxonomical research is microcomputed tomography. It’s great spatial resolution and ability to gather volumetric data during single acquisition without sectioning specimen are properties especially useful in evaluation of small invertebrates. Nondestructive nature of micro-CT gives possibility to combine it with other imaging techniques even for single specimen. Moreover, in case of rare organisms studies it allows to collect full structural data without fracturing their bodies. Application of proper staining, exposure parameters or specific sample preparation significantly improves quality of performed studies. The following article presents summary of current trends and possibilities of microtomography in morphology studies of small invertebrates.
Go to article

Authors and Affiliations

Teresa Nesteruk
Łukasz Wiśniewski
Download PDF Download RIS Download Bibtex

Abstract

Starting from a subjective viewpoint on the decreasing interest in invertebrate fossil taxonomy, this essay discusses its importance in palaeobiological studies exemplified with cases from the palaeobiogeography and palaeoecology of rugose corals, and aims at provoking a discussion on the topic. The possible causes of this negative declining trend include inherent problems of palaeontological taxonomy, and changing systems in science and higher education.
Go to article

Bibliography


Arrigoni, R., Berumen, M.L., Chen, C.A., Terraneo, T.I., Baird, A.H., Payri, C. and Benzoni, F. 2016. Species delimitation in the reef coral genera Echinophyllia and Oxypora (Scleractinia, Lobophylliidae) with a description of two new species. Molecular Phylogenetics and Evolution, 105, 146–159.
Baird, A.H., Hoogenboom, M.O. and Huang, D. 2017. Cyphastrea salae, a new species of hard coral from Lord Howe Island, Australia (Scleractinia, Merulinidae). ZooKeys, 662, 49–66.
Bamber, E.W., Rodríguez, S., Richards, B.C. and Mamet, B. 2017. Uppermost Viséan and Serpukhovian (Mississippian) rugose corals and biostratigraphy. Canadian Cordillera. Palaeontographica Canadiana, 36, 1–169.
Berkowski, B. and Zapalski, M.K. 2018. Large dwellers of the Silurian Halysites biostrome: rhizosessile life strategies of cystiphyllid rugose corals from the Llandovery of Gotland. Lethaia, 51, 581–595.
Billings, E. 1858. Report for the year 1857. Report of Progress, 147–192. Geological Survey of Canada; Montreal.
Cowman, P.F., Quattrini, A.M., Bridge, T.C.L., Watkins-Colwell, G.J., Fadli, N., Grinblat, M., Roberts, T.E., McFadden, C.S., Miller, D.J. and Baird, A.H. 2020. An enhanced target-enrichment bait set for Hexacorallia provides phylogenomic resolution of the staghorn corals (Acroporidae) and close relatives. Molecular Phylogenetics and Evolution, 153, 106944.
Dana, J.D. 1846–1849. Zoophytes. United States Exploring Expedition during the years 1838–1842, 7, 740 pp. Lea and Blanchard; Philadelphia.
Fedorowski, J. 1980. Some aspects of coloniality in corals. Acta Palaeontologica Polonica, 25, 429–437.
Fedorowski, J. 1986. The rugose coral faunas of the Carboniferous/ Permian boundary interval. Acta Palaeontologica Polonica, 31, 394–402.
Fedorowski, J. 1997. Diachronism in the development and extinction of Permian Rugosa. Geologos, 2, 59–164.
Fedorowski, J. 2019. Bashkirian Rugosa (Anthozoa) from the Donets Basin (Ukraine). Part 7. The Family Neokoninckophyllidae Fomichev, 1953, with a preliminary revision of Moscovian taxa. Acta Geologica Polonica, 69, 59–81.
Fedorowski, J. and Bamber, E.W. 2007. Remarks on lithostrotionid phylogeny in western North America and western Europe. In: Hubman, B. and Piller, W.E. (Eds), Fossil corals and sponges. Proceedings of the 9th International Symposium on Fossil Cnidaria and Porifera, Graz, 2003. Österreichische Akademie der Wissenschaften. Schriftenreihe der Erdwissenschaftlichen Kommissionen, 17, 251–273.
Fedorowski, J., Bamber, E.W. and Richards, B.C. 2019. Bashkirian rugose corals from the Carboniferous Mattson Formation in the Liard Basin, northwest Canada – stratigraphic and paleobiogeographic implications. Acta Palaeontologica Polonica, 64, 851–870.
Fedorowski, J., Bamber, E.W. and Stevens, C.H. 2007. Lower Permian colonial rugose corals, Western and Northwestern Pangaea: Taxonomy and distribution, 231 pp. National Research Council of Canada Research Press; Ottawa.
Garcia-Bellido, D.C. and Rodríguez, S. 2005. Palaeobiogeographical relationships of poriferan and coral assemblages during the late Carboniferous and the closure of the western Palaeotethys Sea-Panthalassan Ocean connection. Palaeogeography, Palaeoclimatology, Palaeoecology, 219, 321– 331.
Gómez-Herguedas, A. and Rodríguez, S. 2009. Paleoenvironmental analysis based on rugose corals and microfacies: a case study at La Cornuda section (Early Serpukhovian, Guadiato Area, SW Spain). Lethaia, 42, 39–54.
Groot, G. de 1963. Carboniferous corals of northern Palencia (Spain). Leidse Geologische Mededelingen, 29, 1–124.
Hill, D. 1981. Coelenterata, Supplement 1, Rugosa and Tabulata. In: Teichert, C. (Ed.), Treatise on Invertebrate Paleontology, Part F, 762 pp. Geological Society of America and University of Kansas Press; Lawrence.
Humboldt, A. v. and Bonpland, A. 1805–1829. Voyage aux régions équinoxiales du Nouveau Continent, fait de 1799 à 1804. Maze; Paris.
Kelly, W.A. 1942. Lithostrotionidae in the Rocky Mountains. Journal of Paleontology, 16, 351–361.
Kitahara, M.V., Capel, K.C.C. and Migotto, A.E. 2020. Coenocyathus sebroecki sp. nov.: a new azooxanthellate coral (Scleractinia, Caryophylliidae) from southeastern Brazil. Marine Biodiversity, 50 (4), 1–9.
Kitahara, M.V., Fukami, H., Benzoni, F. and Huang, D. 2016. The new systematics of Scleractinia: integrating molecular and morphological evidence. In: Goffredo, S. and Dubinsky, Z. (Eds), The Cnidaria, past, present and future: The world of Medusa and her sisters, 41–59. Springer; Cham.
Lamarck, J.-B. M. de. 1816. Histoire naturelle des animaux sans vertèbres. Tome second, 568 pp. Verdière; Paris.
Linnæus, C. 1766–1767. Systema naturae per regna tria naturae: secundum classes, ordines, genera, species, cum characteribus, differentiis, synonymis, locis. Ed. 12. 1, Regnum Animale, 1 and 2, pp. 1–532 [1766], pp. 533–1327 [1767]. Laurentii Salvii; Holmiae.
Lonsdale, W. 1845. Description of some characteristic Palaeozoic corals from Russia, Vol. 1. In: Murchison, R.I., Verneuil, E. de and Keyserling, A. v. (Eds), The Geology of Russia in Europe and the Ural Mountains, 591–634. Murray; London.
McCoy, F. 1849. On some new genera and species of Carboniferous corals and Foraminifera. Annals and Magazine of Natural History, Series 2, 3, 1–20.
Milne Edwards, H. and Haime, J. 1848. Mémoire 2. Monographie des turbinolides. Annales des Sciences Naturelles, Zoologie, Series 3, 9, 211–344.
Milne Edwards, H. and Haime, J. 1851. A monograph of British fossil corals, 322 pp. Palaeontographical Society of London; London.
Minato, M. and Kato, M. 1965a. Waagenophyllidae. Journal of the Faculty of Sciences, Hokkaido University. Series 4. Geology and Mineralogy, 12, 1–241.
Minato, M. and Kato, M. 1965b. Durhaminidae. Journal of the Faculty of Sciences, Hokkaido University. Series 4. Geology and Mineralogy, 13, 13–86.
Oliver, W.A. Jr. 1976. Presidential address. Biogeography of Devonian rugose corals. Journal of Paleontology, 50, 365–373.
Oliver, W.A. Jr. and Pedder, A.E.H. 1979. Biogeography of Late Silurian and Devonian rugose corals in North America. In: Gray, J. and Boucot, A.J. (Eds), Historical biogeography, plate tectonics and changing environment, 131–145. Oregon State University Press; Cornvallis.
Orbigny, A. d’ 1852. Cours élémentaire de paleontology et géologie stratigraphique. Vol. 2, 1146 pp. Victor Masson; Paris.
Paz-García, D.A., Hellberg, M.E., García-de-León, F.J. and Balart, E.F. 2015. Switch between morphospecies of Pocillopora corals. The American Naturalist, 186 (3), 434–440.
Rodríguez, S. 1984. Corales rugosos del este des Asturias. Unpublished Ph.D. thesis, 528 pp. Departamento de Paleontologia, Facultad de Ciencias Geológicas, Universidad Complutense de Madrid.
Rodríguez, S. and Kullmann, J. 1999. Rugose corals from the upper member of the Picos de Europa Formation (Moscovian, Cantabrian Mountains, NW Spain). Palaeontographica, Abteilung A, 252, 23–92.
Said, I., Rodríguez, S., Somerville, I.D. and Cózar, P. 2011. Environmental study of coral assemblages from the Upper Viséan Tizra Formation (Adarough Area, Morocco): implication for Western Palaeotethys biogeography. Neues Jahrbuch für Geologie und Paläontologie, Abhandlungen, 260, 101–118.
Saville Kent, W. 1871. On some new and little-known species of madrepores, or stony corals, in the British Museum collection. Proceedings of the Scientific Meetings of the Zoological Society of London, 1871, 275–286.
Scotese, C.R. 2001. Atlas of Earth History. Vol. 1. Paleogeography, 52 pp. PALEOMAP Project; Arlington.
Sorauf, J.E. and Kissling, D.L. 2012. Rugosans immured in Silurian Paleofavosites; Brassfield Formation (Llandovery) of Ohio. Geologica Belgica, 5, 220–225.
Torsvik, T.H. and Cocks, L.R.M. 2017. Earth History and Palaeogeography, 317 pp. Cambridge University Press; Cambridge.
Vinn, O. and Mõtus, M.A. 2014. Endobiotic rugosan symbionts in stromatoporoids from Sheinwoodian (Silurian) of Baltica. Plos One, 9, 1–6.
Wang, H.C. 1950. A revision of the Zoantharia Rugosa in the light of their minute skeletal structures. Philosophical Transactions of the Royal Society of London. Series B Biological Sciences, 611, 175–264.
Wedekind, R. 1927. Die Zoantharia Rugosa von Gotland (bes. Nordgotland), Nebst Bemerkungen zur Biostratigraphie des Gotlandium. Sveriges Geologiska Undersökning, 19, 1–94.
Wu, W.S. and Zhou, K.J. 1982. Upper Carboniferous corals from Kalping and Aksu, Xinjiang. Academia Sinica. Nanjing Institute of Geology and Palaeontology, Bulletin, 1982, 213– 239. [In Chinese with English summary]
Ziegler, P.A. 1988. Laurussia – the old red continent. In: Mc- Millan, N.J., Embry, A.F. and Glass, D.J. (Eds), Devonian of the World. 1. Regional synthesis. Proceedings of the Second International Symposium on the Devonian System, 5–48. Canadian Society of Petroleum Geologists; Calgary.
Go to article

Authors and Affiliations

Jerzy Fedorowski
1

  1. Institute of Geology, Adam Mickiewicz University, Bogumiła Krygowskiego 12, 61-680 Poznań, Poland
Download PDF Download RIS Download Bibtex

Abstract

Communities of soil invertebrates were studied in 4 types of tundra ecosystems on Spitsbergen (Hornsund area) during the vegetative season of 1989. Taxonomic composition, density and biomass of soil fauna were evaluated in the sites along a gradient of increase in the biogenic impact of bird colonies, i.e. in polygonal tundra, mossy/lichenous tundra, Calliergon stramineum moss association, and mossy associations near a colony of Little Auks (Alle die). Average total biomass of soil invertebrates increased in this site sequence from 1.1 to 25.0 g wet weight x m-2 (mainly due to collembolans and nematodes). Seasonal dynamics of all groups of soil meso- and macrofauna (Nematoda, Enchytraeidae, Aranei, Acarina, Collembola, Coleoptera, Diptera larvae) is presented and discussed.

Go to article

Authors and Affiliations

Julia B. Byzova
Alexei V. Uvarov
Adelaida D. Petrova
Download PDF Download RIS Download Bibtex

Abstract

Nematoda, Tardigrada, Rotifera and Crustacea composition in different freshwater habitats on Spitsbergen (Arctic) and King George Island (Antarctic) was presented. In all surveyed groups more genera and species were recorded from Spitsbergen than from King George Island. Habitats richest in taxa were moss banks and thaw ponds, whereas streams were poorest in species. In all groups in both regions cosmopolitan species dominated, but higher number of endemic species was recorded on King George Island. Regarding species composition in surveyed groups it can be suggested that freshwater habitats on Spitsbergen are more similar to each other than those on King George Island.

Go to article

Authors and Affiliations

Katarzyna Janiec

This page uses 'cookies'. Learn more