Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 57
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

The paper presents results of research on cobalt and nickel ions removal from monocomponent solutions

using Purolite ion exchange resins. It has been shown that C 160 ion exchange resin has the best

sorption properties for both ions (Qe – 72.5 mg Co/g and 88.2 mg Ni/g). Regeneration process of this

ion exchanger has high efficiency, achieving about 93% for cobalt ions and about 84% in case of nickel

ions. It has been shown that the use of ion exchange method with suitable ion exchange resins guarantees

effective removal of cobalt and nickel ions from solutions with very high concentrations corresponding

to contents of these metals in industrial wastewaters (e.g. galvanic). In case of C 160 ion exchange resin,

after the sorption process is carried out in one 50 minute cycle, the cobalt concentration decreased from

about 30 000 mg/L to about 9 500 mg/L (approx. 68%), whereas nickel concentration reached about

6 300 mg/L (approx. 79%). Studied chelating resins don’t have such high sorption capacities. In their

case, it is required to convert cobalt and nickel ions into complex forms. The kinetics of studied processes

were described by pseudo-second order equations.

Go to article

Authors and Affiliations

Agnieszka Monika Bożęcka
Stanisława Sanak-Rydlewska
Download PDF Download RIS Download Bibtex

Abstract

At present, industrial development is increasing pollution of soils, air and natural waters. These

pollutants have a negative effect on the health and life of living organisms. Metals which interfere with

the natural biological balance and inhibit self-cleaning processes in water bodies have particularly

toxic effects. Cobalt, which gets into the environment from industrial sewage from electrochemical

plants and the metallurgical industry, also belong to this group. This is also relatively rare and precious

element, so it is important to look for additional sources of its recovery. Chemical and physicochemical

methods such as: precipitation, extraction, membrane processes – nanofiltration, reverse

osmosis, sorption and ion exchange are used to recover cobalt. The choice of method depends on: the

kind and composition of wastewaters as well as on form and concentration of the pollutants.

Ion exchange resins produced by Purolite which were used to remove cobalt ions from solutions

with concentrations corresponding to its contents in galvanic wastewater was the subject of the study.

It has been shown that the C 160 ion exchange resin has the best the sorption properties for Co2+ ions

(54.7 mg/g). In case of this ion exchange resin, after sorption process carried out in one 50 minute cycle,

cobalt concentration decreased from about 30 g/L to about 9 g/L. The values of the sorption capacity

do not depend on the method of introducing the solution into an ion exchange column (pouring or dropping).

E ach of the tested ion exchange resins is characterized by a high degree of cobalt concentration

after regeneration using mineral acids, which can be advantageous in selecting the recovery method for

this metal.

Go to article

Authors and Affiliations

Agnieszka Bożęcka
Stanisława Sanak-Rydlewska
Download PDF Download RIS Download Bibtex

Abstract

In the last decade a growing interest was observed in low-cost adsorbents for heavy metal ions. Clinoptilolite is a mineral sorbent extracted in Poland that is used to remove heavy metal ions from diluted solutions. The experiments in this study were carried out in a laboratory column for multicomponent water solutions of heavy metal ions, i.e. Cu(II), Zn(II) and Ni(II). A mathematical model to calculate the metals' concentration of water solution at the column outlet and the concentration of adsorbed substances in the adsorbent was proposed. It enables determination of breakthrough curves for different process conditions and column dimensions. The model of process dynamics in the column took into account the specificity of sorption described by the Elovich equation (for chemical sorption and ion exchange). Identification of the column dynamics consisted in finding model coefficients β, KE and Deff and comparing the calculated values with experimental data. Searching for coefficients which identify the column operation can involve the use of optimisation methods to find the area of feasible solutions in order to obtain a global extremum. For that purpose our own procedure of genetic algorithm is applied in the study.

Go to article

Authors and Affiliations

Elwira Tomczak
Władysław Kamiński
Download PDF Download RIS Download Bibtex

Abstract

In this paper the overview of the recent study on the rare-earth activated waveguides performed in the Optoelectronic Department of IMiO is presented. We reported on the development of rare earth-doped fluorozirconate (ZBLAN) glass fibers that allow a construction of a new family of visible and ultraviolet fiber lasers pumped by upconversion. Especially the performance of holmium devices is presented. The properties of laser planar waveguides obtained by the LPE process and the growth conditions of rare earths doped YAG layers are presented. In this paper we present also the theoretical study of the nonlinear operation of planar waveguide laser, as an example the microdisk Nd:YAG structure is discussed. We derived an approximate formula which relates the small signal gain in the Nd:YAG active medium and the laser characteristics, obtained for whispering-gallery modes and radial modes, to the output power and real parameters of the laser structure

Go to article

Authors and Affiliations

W. Woliński
M. Malinowski
A. Mossakowska-Wyszyńska
R. Piramidowicz
P. Szczepański
Download PDF Download RIS Download Bibtex

Abstract

The present studies aimed at comparing the effect of the potassium monoionic form (prepared from a model spent ion exchanger) and a conventional potassium fertilizer (KCI) on plant vegetation after addition to depleted soil. To achieve the study aim a pot experiment using orchard grass (Dacrylis glomerata L.) as the test plant was carried out. The vegetation cycle lasted seven weeks. The plants were grown on four series of media: on untreated soil, on soil with added monoionic K form, on soil with added KCI and on soil with Biona-312 substrate added (2% v/v). Biona-312 served as the control fertilizer containing all macro- and microelements. The application of monoionic potassium form positively influenced orchard grass vegetation. The addition of K form into soil increased stem wet and dry biomass, root dry biomass and total dry yield by 15, 10, 13 and 12%, respectively. Bearing in mind that the amount of dry plant matter as source material for humus formation is crucial in soil reclamation, the effectiveness of potassium monoionic form was found to be similar to that of the mineral fertilizer - KCI. Biona-312 was the most efficient fertilizer used in the study, resulting in the greatest yield of Dactylis glomerata L.
Go to article

Authors and Affiliations

Magdalena Zdeb
Mariola Chomczyńska
Vladimir S. Soldatov
Lucjan Pawłowski
ORCID: ORCID
Download PDF Download RIS Download Bibtex

Abstract

Highly sensitive devices such as the SHRIMP IIe/MC ion microprobe help scientists to make precise measurements of past time-scales, paleoclimatic temperatures, and much more.

Go to article

Authors and Affiliations

Zbigniew Jan Czupyt
Download PDF Download RIS Download Bibtex

Abstract

The report presents the results of selected heavy metals (Zn, Cu, Cd, Ni, Pb) removal from industrial wastewater sludge collected from metallurgy industry. As washing solutions two chelating agents were used: EDTA and citric acid. The study was focused on 0.000 (deionized water), 0.010, 0.050, 0.075, 0.100 M and 0.000, 0.050, 0.100, 0.500, 1.000 M, EDTA and citric acid solutions, respectively.

Efficiency of EDTA and citric acid solutions for metal removal was studied by extraction of sludge samples with chelators. Chemical extraction of selected metals was effective for both types of solution. Optimal concentration of EDTA was 0.100M for Zn, Ni and Cd, 0.075 M for Cu and Pb. Optimal concentration of citric acid was 0.500 M for all analyzed metals

Go to article

Authors and Affiliations

Beata Karwowska
Download PDF Download RIS Download Bibtex

Abstract

The adsorption of lead ions onto a zeolite bearing tuff (stilbite) from synthetic acid aqueous solution and

acid mine drainage taken from Sasa mine, Macedonia, is elaborated in this paper. The results present that adsorption

occurs effi ciently in both of cases.

The physical and chemical properties of the used natural material, zeolite bearing tuff, are characterized by X-ray

diffraction, scanning electron microscopy, energy dispersive spectroscopy. The concentration of metal ions in solution

before and after treatment is obtained by AES-ICP.

The effectivity of zeolite bearing tuff is determined through a series of experiments under batch conditions from

single ion solutions, whereby the main parameters are the effects of initial pH of solution, mass of adsorbent, initial

metal concentration in solution, contacting time and competing cations. The maximum capacity of zeolite bearing tuff

for removal of lead ions from solution is determined by equilibrium studies.

The experimental obtained data are fi tted with Freundlich and Langmuir adsorption models. The experimental

data are better fi tted with Langmuir adsorption isotherm.

Zeolite bearing tuff is effective adsorbent for treating acid mine drainage. The results showed that 99% of lead ions

are removed from acid mine drainage, i.e. the concentration of lead ions from 0.329 mg/dm3

decrease to 0.002 mg/dm3

.

The pH value of acid mine drainage from 3.90 after treatment with zeolite bearing tuff increases to 5.36.

Go to article

Authors and Affiliations

Afrodita Zendelska
Mirjana Golomeova
Blagoj Golomeov
Boris Krstev
Download PDF Download RIS Download Bibtex

Abstract

Product quality tests require accurate and precise analytical techniques. Fertilizers belong to a group

of products whose chemical composition is of great importance due to health, environmental and economic

reasons. The following paper presents the results of the research into the content of selected substances in several mineral fertilizers manufactured in Poland. Ion chromatography (IC) was employed to determine selected

inorganic anions and cations, whereas energy dispersive X-ray fluorescence spectrometry (EDXRF) was used

to determine the content of selected elements.

Go to article

Authors and Affiliations

R. Michalski
A. Łyko
S. Szopa
Download PDF Download RIS Download Bibtex

Abstract

In recent years, the increasing threat to ground water quality due to human activities has become a matter of great con-cern. The ground water quality problems present today are caused by contamination and by over exploitation or by combination of both. Reverse osmosis (RO) desalination is one of the main technologies for producing fresh water from sea water and brackish ground water.

Algeria is one of the countries which suffer from the water shortage since many years, so desalination technology becomes inevitable solution to this matter.

In this study, a comparison is provided of results of reverse osmosis desalination for three different qualities of brack-ish water from the central-east region of Algeria (Bouira and Setif Prefectures), wherein they cannot use it as human drink-ing or in irrigation systems. The main objective of our study is to establish a comparison of the reverse osmosis membrane TW30-2540 performances in the term of (permeate flow, recovery rate, permeate total dissolved solids – TDS and salts re-jection) under different operation pressures (each one takes a time of 720 second for pilot scaling). In order to make an overview comparison between the experimental and the simulated results we used ROSA (Reverse Osmosis System Analy-sis) software.

At the end of this study we noted that, the simulated results are lower than the pilot scaling values and the most re-moved salts are the sodium chlorides with 99.05% of rejection rate.

Go to article

Authors and Affiliations

Abderrezak Bouchareb
Mehdi Metaiche
Hakim Lounici
Download PDF Download RIS Download Bibtex

Abstract

The paper presents an impact of the metallurgical wastes dumping site on the following parts of the environment: air, soil and surface waters. Some of the methods used to prevent wastes interactions were showed. The results of the metallurgical wastes leachate samples research, in which toxic metal ions have been found, are presented results of examinations performed on water extracts derived from two types of metallurgical wastes were given. The chemical analysis of water extracts indicate exceeded concentration of toxic metals, such as: lead, arsenic, barium and others. Preliminary results of some metals elimination from the water extracts with PUROLITE ion-exchangers were also presented. The utilised acidous cationit with Na+ groups exchanges the Ba2+ ions in almost 90%, similar to S 930 ionit with chelating groups (Table 5 and 7). Whereas the anionit with hydroxyl groups removes the arsenic ions(V) from the solution with the 60% efficacy (Table 7).

Go to article

Authors and Affiliations

Stanisława Sanak-Rydlewska
Agnieszka Gala
Łukasz Wajda
Download PDF Download RIS Download Bibtex

Abstract

The chemical composition of bulk deposition is an important aspect of assessing ambient air pollution. It contributes significantly to the removal of pollutants from the atmosphere and their transfer to other ecosystems. Thus, it is a reliable determinant of environmental chemistry. Therefore, bulk deposition can be considered useful for tracking the migration path of substances from different sources. The aim of the study carried out at five measurement points in Zabrze and Bytom was to assess the content of selected physico-chemical parameters in bulk deposition. Samples were collected continuously from November 2019 to November 2020. In the collected samples the following were determined: COD, pH, conductivity, dissolved organic carbon, inorganic carbon and total carbon; inorganic anions (Cl-, SO42-, NO3-, NO2-, Br-, PO43-) and cations (Li+, Mg2+, Ca2+, Na+, K+, NH4+), metals and metalloids (Mn, Ni, Co, Cu, Zn, As, Cd, Pb, Cr, and Fe), and carboxylic acids (formic, acetic, oxalic). The obtained test results were statistically processed using Excel, and the normality of data distribution was verified by Shapiro-Wilk test. The results show that pollutants transported in the atmosphere and introduced with precipitation in the Zabrze and Bytom areas are a significant source of area pollution of the region.
Go to article

Bibliography

  1. Azimi, S., Ludwig, A., Thevenot, D.R., & Colin, J.L. (2003). Trace metal determination in total atmospheric deposition in rural and urban areas, Science of the total environment, 308, 1-3, pp. 247–256. DOI:10.1016/S0048-9697(02)00678-2
  2. Czaplicka, M., Jaworek, K., & Wochnik, A. (2014). Determination of aldehydes in wet deposition, Archives of Environmental Protection, 40, 2, pp. 21–31. DOI:10.2478/aep-2014-0011
  3. D'Alessandro, W., Katsanou, K., Lambrakis, N., Bellomo, S., Brusca, L., & Liotta, M. (2013). Chemical and isotopic characterisation of bulk deposition in the Louros basin (Epirus, Greece). Atmospheric research, 132, pp. 399–410. DOI:10.1016/j.atmosres.2013.07.007
  4. EASAC – the European Academies’ Science Advisory Council (2020). Towards a sustainable future: transformative change and post-COVID-19 priorities. A Perspective by EASAC’s Environment Programme, (https://easac.eu/fileadmin/user_upload/EASAC_Perspective_on_Transformative_Change_Web_complete.pdf (12.01.2022)
  5. Fowler, J., Cohen, L., & Jarvis, P. (2013). Practical statistics for field biology, John Wiley & Sons, Hoboken 2013.
  6. Huston, R., Chan, Y.C., Gardner, T., Shaw, G., & Chapman, H. (2009). Characterisation of atmospheric deposition as a source of contaminants in urban rainwater tanks, Water Research, 43, 6, pp. 1630–1640. DOI:10.1016/j.watres.2008.12.045
  7. IMGW-PIB – Institute of Meteorology and Water Management - National Research Institute (2018). Precipitation chemistry monitoring and assessment of pollutant deposition to the ground in 2016-2018. Results of monitoring studies in the Silesian Voivodeship in 2017 (in Polish), (http://www.katowice.wios.gov.pl/monitoring/informacje/stan2017/opady.pdf (12.01.2022))
  8. Kosior, G., Samecka-Cymerman, A., & Brudzińska-Kosior, A. (2018). Transplanted Moss Hylocomium splendens as a Bioaccumulator of Trace Elements from Different Categories of Sampling Sites in the Upper Silesia Area (SW Poland): Bulk and Dry Deposition Impact, Bulletin of Environmental Contamination and Toxicology, 101, 24, pp. 479–485. DOI:10.1007/s00128-018-2429-y
  9. Kurwadkar, S., Kanel, S.R., & Nakarmi, A. (2020). Groundwater pollution: Occurrence, detection, and remediation of organic and inorganic pollutants, Water Environment Research, 92, 10, pp. 1659–1668. DOI:10.1002/wer.1415
  10. Liu, Z., Yang, J., Zhang, J., Xiang, H., & Wei, H. (2019). A bibliometric analysis of research on acid rain, Sustainability, 11, 11, 3077. DOI:10.3390/su11113077
  11. Nowak, A., Korszun-Kłak, K., & Zielonka, U. (2014). Long-Term Measurments of Atmospheric Mercury Species (TGM, TPM) and Hg Deposition in the Silesian Region, Poland: Concept of the Mercury Deposition Coefficient, Archives of Environmental Protection, 40, 3, pp. 43–60. DOI:10.2478/aep-2014-0023
  12. PB18 (test procedure), edition 4, 10.02.2016. The application of ICP-MS in water quality testing.
  13. Pecyna-Utylska, P., Konieczny, T., & Michalski, R. (2021). The influence of sample pH on the determination of selected carboxylic acids by isocratic ion chromatography, Chemistry & Chemical Technology, 15, 3, pp. 319–323. DOI:10.23939/chcht15.03.319
  14. Pęczkowski, G., Szawernoga, K., Kowalczyk, T., Orzepowski, W., & Pokladek, R. (2020). Runoff and Water Quality in the Aspect of Environmental Impact Assessment of Experimental Area of Green Roofs in Lower Silesia, Sustainability, 12, 11, 4793. DOI:10.3390/su12114793
  15. PN-EN 1484:1999 standard. Water Quality — Guidelines for the determination of total organic carbon (TOC) and dissolved organic carbon (DOC).
  16. PN-EN 27888:1999 standard. Water Quality — Determination of electrical conductivity.
  17. PN-EN ISO 10304-1:2009 standard. Water Quality — Determination of dissolved anions by liquid chromatography of ions — Part 1: Determination of bromide, chloride, fluoride, nitrate, nitrite, phosphate and sulfate.
  18. PN-EN ISO 10523:2012 standard. Water Quality — Determination of pH.
  19. PN-EN ISO 11885:2009 standard. Water Quality — Determination of selected elements by inductively coupled plasma optical emission spectrometry (ICP-OES).
  20. PN-EN ISO 14911:2002 standard. Water Quality — Determination of dissolved Li+, Na+, NH4+, K+, Mn2+, Ca2+, Mg2+, Sr2+ and Ba2+ using ion chromatography — Method for water and waste water.
  21. PN-ISO 15705:2005 standard. Water quality — Determination of the chemical oxygen demand index (ST-COD) — Small-scale sealed-tube method.
  22. Polkowska, Z., Astel, A., Walna, B., Małek, S., Mądrzycka, K., Górecki, T., Siepak, J., & Namieśnik, J. (2005). Chemometric Analysis of Rainwater and Throughfall At Several Sites In Poland, Atmospheric Environment, 39, pp. 837–855. DOI:10.1016/j.atmosenv.2004.10.026
  23. Saadat, S., Rawtani, D., & Hussain, C.M. (2020). Environmental perspective of COVID-19, Science of the Total environment, 728, 138870. DOI:10.1016/j.scitotenv.2020.138870
  24. Sanjeeva, A., & Puttaswamaiah, S.G. (2018). Influence of Atmospheric Deposition and Roof Materials on Harvested Rainwater Quality, Journal of Environmental Engineering 144, 12, 04018121. DOI:10.1061/(ASCE)EE.1943-7870.0001460
  25. Siudek, P., Frankowski, M., & Siepak, J. (2015). Seasonal variations of dissolved organic carbon in precipitation over urban and forest sites in central Poland. Environmental Science and Pollution Research, 22, 14, pp. 11087–11096. DOI: 10.1007/s11356-015-4356-3
  26. Tositti, L., Pieri, L., Brattich, E., Parmeggiani, S., & Ventura, F. (2018). Chemical characteristics of atmospheric bulk deposition in a semi-rural area of the Po Valley (Italy). Journal of Atmospheric Chemistry, 75, 1, pp. 97–121. DOI: 10.1007/s10874-017-9365-9
  27. Wetherbee, G.A., Benedict, K.B., Murphy, S.F., & Elliott, E.M. (2019). Inorganic nitrogen wet deposition gradients in the Denver-Boulder metropolitan area and Colorado Front Range - Preliminary implications for Rocky Mountain National Park and interpolated deposition maps, Science of the total environment, 691, pp. 1027–1042. DOI:10.1016/j.scitotenv.2019.06.528
Go to article

Authors and Affiliations

Rajmund Michalski
1
ORCID: ORCID
Paulina Pecyna-Utylska
1
ORCID: ORCID

  1. Institute of Environmental Engineering, Polish Academy of Sciences, Poland
Download PDF Download RIS Download Bibtex

Abstract

Ultratrace analysis requires the use of extremely clean reagents, including water. Quality of water used in laboratories is crucial element of obtained reliable results. In chemical and biological laboratories, as well as industry, distilled, re-distilled and deionized waters arc used. Important factor of waler quality is the content of inorganic ions. One ofthe most competitive analytical techniques for trace analysis of inorganic anions and cations is ion chromatography. In the work ion chromatographic method for the determination of common inorganic anions (fluoride, chloride, nitrate, phosphate and sulfate) and cations (lithium, sodium, ammonium, potassium, magnesium and calcium) in distilled, re-distilled and deionized water has been developed and validated.
Go to article

Authors and Affiliations

Rajmund Michalski
ORCID: ORCID
Aleksandra Łyko
Download PDF Download RIS Download Bibtex

Abstract

As a rule, nitrates are present in all natural water bodies. Their increased concentrations are connected with the discharge of insufficiently treated wastewater from industrial and communal enterprises, agricultural and livestock complexes. Recent scientific publications concerning treatment methods for nitrates removal from natural water and wastewater were analyzed in order to create effective and low-waste technology for obtaining high quality water. It has been established that the ion exchange method is quite effective for removing nitrates from water. In the paper, the processes of ion exchange removal of nitrates from water on low-axis anionite in DOWEX Marathon WBA in Сl- form were investigated. During the sorption of nitrates with a concentration of 186, 205, 223 and 2200 mg/dm3, it was established that the full exchangeable dynamic capacity was 1.075, 1.103, and 1.195, 1.698 g-eq/dm3, respectively. To regenerate anionite, solutions of ammonia as well as potassium chloride, ammonium chloride and potassium carbonate were used in this work. The choice of potassium and ammonium compounds is due to the prospect of further use of regeneration solutions for the production of liquid fertilizers.
Go to article

Bibliography

  1. Alguacil-Duarte, F., González-Gómez, F. & Romero-Gámez, M. (2022). Biological nitrate removal from a drinking water supply with an aerobic granular sludge technology: An environmental and economic assessment. Journal of Cleaner Production, 367. DOI:10.1016/j.jclepro.2022.133059
  2. Bodzek, M. (2019). Membrane separation techniques – removal of inorganic and organic admixtures and impurities from water environment – review. Archives of Environmental Protection, 45, 4, pp. 4–19. DOI:10.24425 / aep.2019.130237.
  3. Boubakri, A., Al-Tahar Bouguecha, S. & Hafiane, A. (2022). FO–MD integrated process for nitrate removal from contaminated groundwater using seawater as draw solution to supply clean water for rural communities. Separation and Purification Technology, 298. DOI:10.1016/j.seppur.2022.121621
  4. Gutiérrez, M., Biagioni, R.N., Alarcón-Herrera, M.T. & Rivas- Lucero, B.A. (2018). An overview of nitrate sources and operating processes in arid and semiarid aquifer systems. Science of the Total Environment, 624, pp. 1513–1522. DOI:10.1016/j. scitotenv.2017.12.252
  5. Hansen, B., Sonnenborg, T.O., Møller, I., Bernth, J.D., Høyer, A., Rasmussen, P., Sandersen P.B.E. & Jørgensen, F. (2016). Nitrate vulnerability assessment of aquifers. Environmental Earth Sciences, 75, 12. DOI:10.1007/s12665-016-5767-2
  6. Kaushal, S.S. (2016). Increased salinization decreases safe drinking water. Environ. Sci. Technol., 50, pp. 2765–2766. doi:10.1021/ acs.est.6b00679.
  7. Królak, E. & Raczuk, J. (2018). Nitrate concentration-related safety of drinking water from various sources intended for consumption by neonates and infants. Archives of Environmental Protection, 44, 1, pp. 3–9. DOI:10.24425/118176
  8. National report on drinking water quality and drinking water supply in Ukraine in 2021. Database ‘Ministry of Regional Development of Ukraine’ (in Ukrainian).
  9. Nujić, M., Milinković, D. & Habuda-Stanić, M. (2017). Nitrate removal from water by ion exchange. Croatian journal of food science and technology, 9, 2, pp. 182–186. DOI:10.17508/ CJFST.2017.9.2.15
  10. Preetham, V. & Vengala, J. (2023). Adsorption isotherm, kinetic and thermodynamic studies of nitrates and nitrites onto fish scales. In Recent Advances in Civil Engineering, pp. 429–442. doi:10.1007/978-981-19-1862-9_27
  11. Remeshevska, I., Trokhymenko, G., Gurets, N., Stepova, O., Trus, I. & Akhmedova, V. (2021). Study of the ways and methods of searching water leaks in water supply networks of the settlements of Ukraine. Ecological Engineering and Environmental Technology, 22, 4, pp. 14–21. DOI:10.12912/27197050/137874
  12. Song, Q., Zhang, S., Hou, X., Li, J., Yang, L., Liu, X. & Li, M. (2022). Efficient electrocatalytic nitrate reduction via boosting oxygen vacancies of TiO2 nanotube array by highly dispersed trace cu doping. Journal of Hazardous Materials, 438. DOI:10.1016/j. jhazmat.2022.129455
  13. Trus, I., Gomelya, M., Skiba, M., Pylypenko, T. & Krysenko, T. (2022). Development of Resource-Saving Technologies in the use of sedimentation inhibitors for reverse osmosis installations. J. Ecol. Eng., 23(1), pp. 206–215. DOI:10.12911/22998993/144075
  14. Trus, I. (2022). Optimal conditions of ion exchange separation of anions in low-waste technologies of water desalination. Journal of Chemical Technology and Metallurgy, 57, 3, pp. 550–558.
  15. Trusa, I. M., Gomelya, M. D. & Tverdokhlib, M. M. (2021). Evaluation of the contribution of ion exchange in the process of demanganization with modified cation exchange resin ku-2- 8. Journal of Chemistry and Technologies, 29, 4, pp. 540–548. DOI:10.15421/jchemtech.v29i4.242561
  16. Trus, I. & Gomelya, M. (2022). Low-waste technology of water purification from nitrates on highly basic anion exchange resin. Journal of Chemical Technology and Metallurgy, 57, 4, pp. 765–772. https://dl.uctm.edu/journal/node/j2022-4/14_21- 93_br4_2022_pp765-772.pdf
  17. Trusb, I., Gomelya, M., Skiba, M. & Vorobyova, V. (2021). Promising method of ion exchange separation of anions before reverse osmosis. Archives of Environmental Protection, 47, 4, pp. 93–97. DOI:10.24425/aep.2021.139505
  18. Trus, I., Gomelya, N., Halysh, V., Radovenchyk, I., Stepova, O. & Levytska, O. (2020). Technology of the comprehensive desalination of wastewater from mines. Eastern-European Journal of Enterprise Technologies, 3(6–105), pp. 21–27. DOI:10.15587/1729-4061.2020.206443 Vasilache, N., Cruceru, L., Petre, J., Chiriac, F. L., Paun, I., Niculescu, M., Pirvu F. & Lupu, G. (2018). The removal of nitrate from drinking water, natural water by ion exchange using ion exchange resin, purolite A520E and A500. Iternational Symposium “The Environment and the Industry”, SIMI 2018, Proceedings Book DOI:10.21698/simi.2018.fp53 Voutchkova, D.D., Schullehner, J., Rasmussen, P. & Hansen, B. (2021). A high-resolution nitrate vulnerability assessment of sandy aquifers (DRASTIC-N). Journal of Environmental Management, 277. DOI:10.1016/j.jenvman.2020.111330 Ward, M.H., Jones, R.R., Brender, J.D., de Kok, T.M., Weyer, P. J., Nolan, B. T., Vilanueva C.M. & van Breda, S.G. (2018). Drinking water nitrate and human health: An updated review. International Journal of Environmental Research and Public Health, 15, 7. DOI:10.3390/ijerph15071557 Wiśniowska, E. & Włodarczyk-Makuła, M. (2020). Removal of nitrates and organic compounds from aqueous solutions by zero valent (ZVI) iron reduction coupled with coagulation/ precipitation process. Archives of Environmental Protection, 46, 3, pp. 22–29. DOI: 10.24425 / aep.2020.134532.
  19. Zabłocki, S., Murat-Błażejewska, S., Trzeciak, J.A. & Błażejewski, R. (2022). High-resolution mapping to assess risk of groundwater pollution by nitrates from agricultural activities in Wielkopolska Province. Poland. Archives of Environmental Protection, 48, 1, pp. 41–57. DOI:10.24425/aep.2022.140544
Go to article

Authors and Affiliations

Inna Trus
1
ORCID: ORCID
Mukola Gomelya
1
ORCID: ORCID
Vita Halysh
1
ORCID: ORCID
Mariia Tverdokhlib
1
ORCID: ORCID
Iryna Makarenko
1
Tetiana Pylypenko
1
ORCID: ORCID
Yevhen Chuprinov
2
ORCID: ORCID
Daniel Benatov
1
ORCID: ORCID
Hennadii Zaitsev
2

  1. National Technical University of Ukraine «Igor Sikorsky Kyiv Polytechnic Institute», Kyiv, Ukraine
  2. State University of Economics and Technology: Kryvyi Rih, Ukraine
Download PDF Download RIS Download Bibtex

Abstract

The present study aimed at a determination of the formula allowing water content to be calculated for model degraded soil enriched with Biona-312 ion exchange substrate. To this end a mixture of sand and Biona- 312 was prepared which was monitored for water content changes. Moisture was determined both gravimetrically and reflectometrically (TOR method). To improve the reliability of the TOR method individual calibration was made. The specific calibration formula as polynomial of the third degree was found for water content determination in sand supplemented with Biona-312. The results confirmed the high potential of the TOR method in moisture monitoring, especially when individual calibration is done.
Go to article

Authors and Affiliations

Mariola Chomczyńska
Zbigniew Suchorab
Download PDF Download RIS Download Bibtex

Abstract

The accumulation and removal of the heavy metals (Cd, Cr, Cu, Ni, Pb, Zn) by fibrous ion exchangers at different stages of a typical biological wastewater treatment system, have been studied. In particular, the chelating ion exchanger FIBAN X- I allows rapid and efficient sorption of the heavy metals from primary treated effluents. The degree of removal of Cu ion wa, about 17%; for both Cd and Pb the removal efficiency wa, >40%. Applied in batch process mode FIBAN X-1 should diminish the content of heavy metals in sewage and treated effluent.
Go to article

Authors and Affiliations

Henryk Wasąg
Download PDF Download RIS Download Bibtex

Abstract

Due to the increased environmental awareness, green chemistry becomes an important element of environmental protection. Unfortunately, it generate specific environmental costs, which are related to the use of toxic chemical reagents and waste generation. The most frequently determined analytes include inorganic and organic anions and cations. The methods used so far for their analysis in water, sewage and various other types of samples are increasingly being replaced by ion chromatography methods. This paper presents the most important advantages and limitations of ion chromatography in the context of “green analytical chemistry.” The progress of ion chromatography in gradient and isocratic elution, capillary and multidimensional ion chromatography, as well as miniaturization and methods of sample preparation for analysis, which allow to classify this technique as green analytical chemistry, are described
Go to article

Authors and Affiliations

Rajmund Michalski
1
ORCID: ORCID
Paulina Pecyna-Utylska
1
ORCID: ORCID

  1. Institute of Environmental Engineering, Polish Academy of Sciences, Poland
Download PDF Download RIS Download Bibtex

Abstract

The problem of lithium-ion cells, which degrade in time on their own and while used, causes a significant decrease in total capacity and an increase in inner resistance. So, it is important to have a way to predict and simulate the remaining usability of batteries. The process and description of cell degradation are very complex and depend on various variables. Classical methods are based, on the one hand, on fitting a somewhat arbitrary parametric function to laboratory data and, on the other hand, on electrochemical modelling of the physics of degradation. Alternative solutions are machine learning ones or nonparametric ones like support-vector machines or the Gaussian process (GP), which we used in this case. Besides using the GP, our approach is based on current knowledge of how to use non-parametric approaches for modeling the electrochemical state of batteries. It also uses two different ways of dealing with GP problems, like maximum likelihood type II (ML-II) methods and the Monte Carlo Markov Chain (MCMC) sampling.
Go to article

Authors and Affiliations

Adrian Dudek
1
ORCID: ORCID
Jerzy Baranowski
1
ORCID: ORCID

  1. Department of Automatic Control and Robotics, AGH University of Science and Technology, Kraków, Poland
Download PDF Download RIS Download Bibtex

Abstract

Analysis is performed of the contemporary views on the effect of ion etching (ion-beam milling and reactive ion etching) on physical properties of HgCdTe and on the mechanisms of the processes responsible for modification of these properties under the etching. Possibilities are discussed that ion etching opens for defect studies in HgCdTe, including detecting electrically neutral tellurium nanocomplexes, determining background donor concentration in the material of various origins, and understanding the mechanism of arsenic incorporation in molecular-beam epitaxy-grown films.

Go to article

Authors and Affiliations

I.I. Izhnin
K.D. Mynbaev
A.V. Voitsekhovskii
A.G. Korotaev
O.I. Fitsych
M. Pociask-Bialy

This page uses 'cookies'. Learn more