Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 3
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

With the improvement of the planning level of underground space, the location of the planned under-crossing tunnel can be known in advance when constructing the upper-span tunnel. Therefore, pre-protection measures can be taken in advance during the construction of the upper-span tunnel. A new pre-protection method of a pipe-jacking channel was proposed to reduce the adverse effects of under-crossing shield tunnels. Numerical simulations of different pre-protection schemes were carried out using the finite element method to analyze its deformation control effect. The simulation results show that the deformation control effect of the gantry reinforcement scheme is the most significant. It is shown that the displacement of the pipe-jacking channel is more significantly suppressed with pre-protection measures than without preventive protection measures. The vertical displacement curve of the pipe-jacking channel exhibits a “W” shape after the construction of the double-lane shield underpass. By comparing the three different working conditions, it is found that the maximum vertical displacement and surface settlement of the pipe-jacking channel greatly reduced the gantry reinforcement pre-protection. Compared with Case 3, the effect of the pre-protection measures adopted in Case 2 was less obvious, which indicated that the form of the pre-protection had an important influence on controlling the deformation of the pipe-jacking channel.
Go to article

Authors and Affiliations

Yunliang Cui
1 2
Xukun Yang
1 2
ORCID: ORCID
Xinquan Wang
1 2
Hongguo Diao
1 2
Xiao Li
1 2
Yuanyuan Gao
1 2

  1. School of Engineering, Hangzhou City University, Hangzhou 310015, PR China
  2. Key Laboratory of Safe Construction and Intelligent Maintenance for Urban Shield Tunnels of Zhejiang Province, Hangzhou 310015, PR China
Download PDF Download RIS Download Bibtex

Abstract

This article describes some selected aspects of a preliminary treatment of measurement cycle results obtained by a new Pen206_18 type hydraulic borehole penetrometer (a borehole jack type), a tool of an in situ determining of mechanical properties of rocks. The pre-treatment of the measurement cycle results is a necessary step to prepare the data for a following appropriate analysis of stress-strain parameters of rocks. Aforementioned aspects are focused mainly on a pre-treatment of hydraulic pressure readouts.
The Pen206_18 type penetrometer is a modified version of a standard Pen206 type penetrometer. The standard version, based on a digital measurement of a critical hydraulic pressure, has been in use in polish hard coal mines for almost 15 years to determine various rock strength parameters. In contrary, the Pen206_18 type penetrometer now provides simultaneous recording of two main measurement cycle parameters (hydraulic pressure and a head pin stroke) during the whole measurement cycle duration. A recent modification of the penetrometer has given an opportunity to look closer at various factors having an influence on the measurement cycle data readouts and, as a consequence, to lay a foundation for a development a new penetrometric method of determining stress-strain parameters of rocks.
In this article it was shown that just before a main stage of the measurement cycle, a transitional stage could occur. It complicates a determination of the beginning of an useful set of measurement cycle data. This problem is widely known also in other static in situ methods of determining stress-strain parameters. Unfortunately, none of various known workouts of this problem were sufficiently adequate to the pre-treatment of the penetrometric measurement cycle results. Hence, a new method of determining the beginning of the useful set of pressure readouts has been developed. The proposed method takes into account an influence of an operational characteristics of the measuring device. This method is an essential part of a new pre-treatment procedure of the Pen206_18 measurement cycle’s pressure readouts.
Go to article

Bibliography

[1] A . Kidybiński, J. Gwiazda, Z. Hładysz, Ocena mechanicznych własności skał oraz stateczności górotworu hydraulicznym penetrometrem otworowym. Prace Głównego Instytutu Górnictwa, Seria Dodatkowa. Katowice (1976).
[2] R.E. Goodman, T.K. Van, F.E. Heuze, Measurement of Rock Deformability in Boreholes. In: Proceedings of the 10th U.S. Symposium on Rock Mechanics, University of Texas, Austin, TX, 523-555 (1970).
[3] AS TM D4971-02, Standard Test Method for Determining the In situ Modulus of Deformation of Rock Using the Diametrically Loaded 76-mm (3-in.) Borehole Jack. AS TM International, West Conshohocken, PA, (2002). DOI : https://doi.org/10.1520/D4971-16
[4] R. Pierszalik, S. Rajwa, A. Walentek, K. Bier, 2020. A Pen206 borehole jack suitability assessment for rock mass deformability determination. Arch. Min. Sci. 65 (3), 639-660 (2020). DOI : https://doi.org/10.24425/ams.2020.134135
[5] P.H.V. Nguyen, M. Rotkegel, H.D. Van, Analysis of Behaviour of the Steel Arch Support in the Geological and Mining Conditions of the Cam Pha Coal Basin, Vietnam. Arch. Min. Sci. 65 (3), 551-567 (2020). DOI : https://doi.org/10.24425/ams.2020.134134
[6] A . Walentek, T. Janoszek, S. Prusek, A. Wrana, Influence of longwall gateroad convergence on the process of mine ventilation network-model tests. International Journal of Mining Science and Technology 29, 585-590 (2019). DOI : https://doi.org/10.1016/j.ijmst.2019.06.013
[7] I RB Ogrodzieniec. Penetrometr otworowy typu Pen206. Dokumentacja techniczno-ruchowa + Załącznik A – pulpit Pen206E (2008).
[8] A . Nierobisz, Oznaczanie własności mechanicznych skał za pomocą hydraulicznego penetrometru otworowego nowej generacji. Górnictwo i Geoinżynieria 34 (2), 491-500 (2010).
[9] A . Nierobisz, J. Gawryś, K. Bier, Analiza konstrukcji hydraulicznego penetrometru otworowego i jego modernizacja dla zwiększenia zakresu pomiarowego. Przegląd Górniczy 72 (6), 1-15 (2016).
[10] F .E. Heuze, Estimating the Deformability and Strength of Rock Masses – In-Situ Tests, and Related Procedures. In: STRATCOM Advanced Concept Technology Demonstration (ACTD), Albuquerque (2003). DOI : https://doi.org/10.2172/15005085
[11] M. Rezaei, M. Ghafoori, R. Ajalloeian, Comparison between the In situ Tests’ Data and Empirical Equations for Estimation of Deformation Modulus of Rock Mass. Geosciences Research 1 (1), 47-59 (2016). DOI : https://doi.org/10.22606/gr.2016.11005
[12] A . Palmström, R. Singh, The deformation modulus of rock masses – comparisons between in situ tests and indirect estimates. Tunnelling and Underground Space Technology 16 (3), 115-131 (2001). DOI : https://doi.org/10.1016/S0886-7798(01)00038-4
[13] M. Bukowska, A. Kidybiński, Wpływ czynników naturalnych masywu skalnego na jego wytrzymałość określaną metodami penetrometryczną i laboratoryjną. Prace Naukowe Głównego Instytutu Górnictwa, Research reports mining and environment 1, 35-46 (2002).
Go to article

Authors and Affiliations

Rafał Pierszalik
1
ORCID: ORCID

  1. Central Mining Institute (GIG ), 1 Gwarków Sq., 40-166 Katowice, Poland
Download PDF Download RIS Download Bibtex

Abstract

Currently available field rock mass deformability determination methods are rather difficult to perform, due to their complexity and a time-consuming nature. This article shows results of a suitability assessment of a Pen206 borehole jack (a hydraulic penetrometer) for field rock mass deformability measurements. This type of the borehole jack is widely used in Polish hard coal mining industry. It was originally intended only for quick rock mass strength parameters determination. This article describes an analysis and scope of basic modifications performed mainly on a borehole jack head. It includes discussion of results with possible directions for future development of the device.

Go to article

Authors and Affiliations

Rafał Pierszalik
ORCID: ORCID
Sylwester Rajwa
ORCID: ORCID
Andrzej Walentek
Krzysztof Bier

This page uses 'cookies'. Learn more