Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 6
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

The aim of this study was to compare the effect of controlled-release monensin on the automatic registered body condition score (BCS), and biomarkers registered using a fully automated inline analyzer, such as milk β-hydroxybutyrate (BHB), milk yield (MY) and milk lactate dehydrogenase (LDH).
Two experimental groups were formed: (1) monensin group (GK) supplemented with monensin (a monensin controlled release capsule (MCRC) of 32.4 g, n = 42) and (2) control group (GO) (capsule containing no monensin, n = 42). Treatment began 21 days before calving, and the experiment was finished one month after calving. In order to gather data about MY, BHB, and LDH, Herd Navigator a real-time analyzer (Lattec I/S, Hillerød, Denmark) was used together with a DeLaval milking robot (DeLaval Inc., Tumba, Sweden). BCS was measured using 3D BCS cameras (DeLaval, DeLaval International AB). All data were registered at one, 15 and 30 days after calving. The statistical analysis was performed using SPSS 26.0 (SPSS Inc., Chicago, USA) package. It was concluded that in the group of cows with monensin supplement (a monensin controlled release capsule of 32.4 g,), the body condition score was statistically significantly higher at the 15th (+0.24, p=0.003) and 30th (+0.52, p<0.001) days after calving, the productivity of cows in this group increased by 10.25% from the 1st to the 15th day and by 22.49% from the beginning of the experiment to the 30th day (p<0.001), lactate dehydrogenase activities at the 15th and 30th days after calving in this group were lower (p<0.001), and also in this group, the number of cows with a value of β-hydroxybutyrate of 0.06 mmol/L decreased from the beginning of the experiment to 30 days after calving by 4.70% (from 19.00% to 14.30%) compared with the control group.
Go to article

Authors and Affiliations

M. Urbutis
1
V. Juozaitienė
2
G. Palubinskas
3
K. Džermeikaitė
1
D. Bačėninaitė
1
R. Bilskis
4
W. Baumgartner
5
R. Antanaitis
1

  1. Large Animal Clinic, Veterinary Academy, Lithuanian University of Health Sciences, Tilžės St. 18, LT-47181 Kaunas, Lithuania
  2. Department of Biology, Faculty of Natural Sciences, Vytautas Magnus University, K. Donelaičio St. 58, LT-47181, Kaunas, Lithuania
  3. Department of Animal Breeding, Veterinary Academy, Lithuanian University of Health Sciences,Tilžės 18, LT-47181 Kaunas, Lithuania
  4. Animal Husbandry Selections, Breeding Values and Dissemination Center, Agriculture Academy, Vytautas Magnus University, Universiteto St. 10A, Akademija, Lt-53361 Kaunas Distr., Lithuania
  5. University Clinic for Ruminants, University of Veterinary Medicine, Veterinaerplatz 1, A-1210 Vienna, Austria
Download PDF Download RIS Download Bibtex

Abstract

We investigated changes in concentrations of ADP (adiponectin), LEP (leptin), BHBA (beta-hydroxybutyric acid), NEFA (non-esterified fatty acid), Glucose (Glu) and INS (insulin) in serum of healthy perinatal dairy cows and cows with ketosis. Twenty-one healthy cows and seventeen cows with ketosis from a herd of a total 60 Holstein cows (near dry period i.e. 56 days antepartum) were selected. Blood was collected through the tail vein every 7 days, from 56 day antepartum to 56 day postpartum. Serum ADP, LEP, BHBA, NEFA, Glu, and INS concentrations were determined, and ketosis was diagnosed through serum BHBA (≥1.2 mmol/L). We showed the concentration of serum adipokines and energy balancing indices were stable during antepar- tum period. However, ADP concentration increased while LEP decreased, and there were a significant increase in cows with ketosis compared to that of in healthy cows. Serum BHBA and NEFA concentrations increased significantly at first, and then gradually decreased in both healthy cows and cows with ketosis. However, cows with ketosis showed higher concentrations of BHBA and NEFA which restored later. The serum concentration of Glu in both healthy dairy cows and cows with ketosis showed a decreasing trend. INS concentration in healthy cows was decreased while it was increased in cows with ketosis. The results reflect the extent of hypo- glycemia and lipid mobilization postpartum, suggest IR exists in cows with ketosis while serum ADP and LEP might play roles in the development of ketosis.

Go to article

Authors and Affiliations

L. Shen
B. Qian
J. Xiao
Y. Zhu
S. Hussain
J. Deng
G. Peng
Z. Zuo
L. Zou
S. Yu
X. Ma
Z. Zhong
Z. Ren
Y. Wang
ORCID: ORCID
H. Liu
ORCID: ORCID
Z. Zhou
D. Cai
Y. Hu
X. Zong
S. Cao
Download PDF Download RIS Download Bibtex

Abstract

A negative energy balance is a common condition in high yielding dairy cows causing the production of ketone bodies (KB), including beta-hydroxybutyrate (BHB), defined as subclinical ketosis (SCK) if clinical signs are missing. The aim of the present study was to evaluate a handheld electronic device for the detection of SCK (BHB-concentration > 1.2 mmol/l), in capillary blood and venous whole blood in cows (WellionVet BELUA, MED TRUST Handels GmbH, Marz, Austria) as well as the feasibility of the puncture of the external vulva with a single use lancet. For this purpose, the blood BHB-concentration was tested in 250 venous and capillary blood samples and compared to the results of a certified laboratory. The majority (76.3%) of the animals displayed no signs of discomfort related to the puncture and in 74.2% the procedure was successful on the first attempt. The BHB-concentrations detected in capillary blood showed good agreement with the reference method, both in capillary (correlation coefficient 0.94 (p<0.001), Kappa-value 0.89) and venous whole blood (correlation coefficient of 0.95 (p<0.001), Kappa-value 0.89). Altogether, 98% of all the samples were correctly classified as SCK or non-SCK by the handheld device in capillary blood (sensitivity 0.96, specificity 0.98) and 97.4% in venous whole blood (sensitivity 0.889, specificity 0.991), respectively. An increase in the correlation by the adaptation of the cut off level could not be achieved for both sampling sites.

Go to article

Authors and Affiliations

J.L. Khol
K. Freigassner
A. Stanitznig
A. Tichy
T. Wittek
Download PDF Download RIS Download Bibtex

Abstract

Our main aim was to investigate the predictive value of prepartum behaviors such as total daily rumination (TDR), total daily activity (TDA) and dry matter intake (DMI) as early indicators to detect cows at risk for hyperketonemia (HYK), hypoglycemia (HYG) or high non-esterified fatty acid (NEFA) status in the first (wk1) and second week (wk2) postpartum. In a case control study, 64 Holstein cows were enrolled 3 weeks before the expected time of calving and monitored until 15 days in milk (DIM). Postpartum blood samples were taken at D3 and D6 for wk1 and at D12 and D15 for wk2 to measure beta-hydroxybutyrate, NEFA and glucose concentration. Ear-mounted accelerometers were used to measure TDR and TDA. DMI and milk yield were obtained from farm records. Relationships between the average daily rate of change in prepartum TDR (ΔTDR), TDA (ΔTDA), and DMI (ΔDMI) with postpartum HYK, HYG and NEFA status in wk1 and wk2 post-partum were evaluated using linear regression models. Models were adjusted for potential confounding variables, and covariates retained in the final models were determined by backward selection. No evidence was found to support the premise that prepartum ΔTDR, ΔTDA or ΔDMI predicted postpartum HYK, HYG or NEFA status in wk1 or in wk2. Overall, prepartum ΔTDR, ΔTDA and ΔDMI were not effective predictors of HYK, HYG or NEFA status in the first 2 weeks postpartum.
Go to article

Bibliography

1. Adewuyi AA, Gruys E, van Eerdenburg FJ (2005) Non esterified fatty acids (NEFA) in dairy cattle. A review. Vet Q 27: 117-126.
2. Bauman DE, Currie WB (1980) Partitioning of Nutrients During Pregnancy and Lactation: A Review of Mechanisms Involving Homeo-stasis and Homeorhesis. J Dairy Sci 63: 1514-1529.
3. Bell AW (1995) Regulation of organic nutrient metabolism during transition from late pregnancy to early lactation. J Anim Sci 73: 2804-2819.
4. Berckmans D (2015) Smart farming for Europe: value creation through precision livestock farming. In: Ilan Halachmi (ed) Precision Livestock Farming Applications, Wageningen Academic, brill, pp 139-147.
5. Bikker JP, van Laar H, Rump P, Doorenbos J, van Meurs K, Griffioen GM, Dijkstra J (2014) Technical note: Evaluation of an ear-attached movement sensor to record cow feeding behavior and activity. J Dairy Sci 97: 2974-2979.
6. Caixeta LS, Ospina PA, Capel MB, Nydam DV (2015) The association of subclinical hypocalcemia, negative energy balance and disease with bodyweight change during the first 30 days post-partum in dairy cows milked with automatic milking systems. Vet J 204: 150-156.
7. Constable PD, Hinchcliff KW, Done SH, Gruenberg W (2016) Veterinary Medicine: A Textbook of the Diseases of Cattle, Horses, Sheep, Pigs and Goats. 11th ed.,. Elsevier Health Sciences, pp 1662-1726.
8. Contreras GA, O’Boyle NJ, Herdt TH, Sordillo LM (2010) Lipomobilization in periparturient dairy cows influences the composition of plasma nonesterified fatty acids and leukocyte phospholipid fatty acids. J Dairy Sci 93: 2508-2516.
9. Duffield TF, Lissemore KD, McBride BW, Leslie KE (2009) Impact of hyperketonemia in early lactation dairy cows on health and pro-duction. J Dairy Sci 92: 571-580.
10. Edwards JL, Tozer PR (2004) Using Activity and Milk Yield as Predictors of Fresh Cow Disorders. J Dairy Sci 87: 524-531.
11. Emam MH, Shepley E, Mahmoud MM, Ruch M, Elmaghawry S, Abdelrazik W, Abdelaal AM, Crooker BA, Caixeta LS (2023) The association between prepartum rumination time, activity and dry matter intake and subclinical hypocalcemia and hypomagnesemia in the first 3 days postpartum in Holstein dairy cows. Animals 13:1621
12. Goff JP (2006) Macromineral physiology and application to the feeding of the dairy cow for prevention of milk fever and other peripar-turient mineral disorders. Anim Feed Sci Technol 126: 237-257.
13. Goff JP (2008) The monitoring, prevention, and treatment of milk fever and subclinical hypocalcemia in dairy cows. Vet J 176: 50-57.
14. Goldhawk C, Chapinal N, Veira DM, Weary DM, von Keyserlingk MA. (2009) Prepartum feeding behavior is an early indicator of sub-clinical ketosis. J Dairy Sci 92: 4971-4977.
15. González LA, Tolkamp BJ, Coffey MP, Ferret A, Kyriazakis I (2008) Changes in feeding behavior as possible indicators for the auto-matic monitoring of health disorders in dairy cows. J Dairy Sci 91: 1017-1028.
16. Grummer RR (1995) Impact of changes in organic nutrient metabolism on feeding the transition dairy cow. J Anim Sci 73: 2820-2833.
17. Hammon DS, Evjen IM, Dhiman TR, Goff JP, Walters JL (2006) Neutrophil function and energy status in Holstein cows with uterine health disorders. Vet Immunol Immunopathol 113: 21-29.
18. Hansen LB, Young CW, Miller KP, Touchberry RW (1979) Health Care Requirements of Dairy Cattle. I. Response to Milk Yield Selec-tion. J Dairy Sci 62: 1922-1931.
19. Hayirli A, Grummer RR, Nordheim EV, Crump PM (2002) Animal and dietary factors affecting feed intake during the prefresh transi-tion period in holsteins. J Dairy Sci 85: 3430-3443.
20. Hebbali A (2020) Olsrr: Tools for Building OLS Regression Models, R Package Version 0.5.3.; R Foundation for Statistical Compu-ting:Vienna, Austria.
21. Herdt TH (2000) Ruminant adaptation to negative energy balance. Influences on the etiology of ketosis and fatty liver.Vet Clin North Am Food Anim Pract 16: 215-230.
22. Huzzey JM, Veira DM, Weary DM, Von Keyserlingk MA (2007) Prepartum behavior and dry matter intake identify dairy cows at risk for metritis. J Dairy Sci 90: 3220-3233.
23. Kabir M, Hasan MM, Tanni NS, Parvin MS, Asaduzzaman M, Ehsan MA, Islam MT (2022) Metabolic profiling in periparturient dairy cows and its relation with metabolic diseases. BMC Res Notes 15: 231.
24. Kaufman EI, LeBlanc SJ, McBride BW, Duffield TF, DeVries TJ (2016) Association of rumination time with subclinical ketosis in tran-sition dairy cows. J Dairy Sci 99: 5604-5618.
25. LeBlanc SJ, Leslie KE, Duffield TF (2005) Metabolic predictors of displaced abomasum in dairy cattle. J Dairy Sci 88: 159-170.
26. Liboreiro DN, Machado KS, Silva PR, Maturana MM, Nishimura TK, Brandão AP, Endres MI, Chebel RC (2015) Characterization of peripartum rumination and activity of cows diagnosed with metabolic and uterine diseases. J Dairy Sci 98: 6812-6827.
27. McArt JA, Nydam DV, Oetzel GR (2012) Epidemiology of subclinical ketosis in early lactation dairy cattle. J Dairy Sci 95: 5056-5066.
28. Ospina PA, McArt JA, Overton TR, Stokol T, Nydam DV (2013) Using nonesterified fatty acids and beta hydroxybutyrate concentra-tions during the transition period for herd-level monitoring of increased risk of disease and decreased reproductive and milking perfor-mance. Vet Clin North Am Food Anim Pract 29: 387-412.
29. Ospina PA, Nydam DV, Stokol T, Overton TR (2010) Association between the proportion of sampled transition cows with increased nonesterified fatty acids and beta hydroxybutyrate and disease incidence, pregnancy rate, and milk production at the herd level. J Dairy Sci 93: 3595-3601.
30. Overton TR (2001) Transition cow programs. The good, the bad, and how to keep them from getting ugly. Adv Dairy Tech 13: 17-26.
31. Paudyal S (2021) Using rumination time to manage health and reproduction in dairy cattle: a review. Vet Q 41: 292-300.
32. Ruoff J, Borchardt S, Heuwieser W (2017) Short communication: Associations between blood glucose concentration, onset of hyper-ketonemia, and milk production in early lactation dairy cows. J Dairy Sci 100: 5462-5467.
33. Schirmann K, Weary DM, Heuwieser W, Chapinal N, Cerri RL, von Keyserlingk MA (2016) Short communication: Rumination and feeding behaviors differ between healthy and sick dairy cows during the transition period. J Dairy Sci 99: 9917-9924.
34. Soriani N, Trevisi E, Calamari L (2012) Relationships between rumination time, metabolic conditions, and health status in dairy cows during the transition period. J Anim Sci 90: 4544-4554.
35. Stevenson JS, Banuelos S, Mendonça LG. (2020) Transition dairy cow health is associated with first postpartum ovulation risk, meta-bolic status, milk production, rumination, and physical activity. J Dairy Sci 103: 9573-9586.
36. Mepham TB (1993) The development of ideas on the role of glucose in regulating milk secretion. Australian J Agric Res 44: 509-522.
37. van Hoeij RJ, Kok A, Bruckmaier RM, Haskell MJ, Kemp B, van Knegsel AT (2019) Relationship between metabolic status and behav-ior in dairy cows in week 4 of lactation. Animal 13: 640-648.
38. von Keyserlingk MA, Rushen J, de Passillé AM, Weary DM (2009) Invited review: The welfare of dairy cattle – Key concepts and the role of science. J Dairy Sci 92: 4101-4111.
39. Wathes CM, Kristensen HH, Aerts JM, Berckmans D (2008) Is precision livestock farming an engineer’s daydream or nightmare, an animal’s friend or foe, and a farmer’s panacea or pitfall? Comp Electr 64: 2-10.
40. Weary DM, Huzzey JM, Von Keyserlingk MA (2009) Boardinvited review: Using behavior to predict and identify ill health in animals. J Anim Sci 87: 770-777.
41. Weber WJ, Wallaces CR, Hansen LB, Chester-Jones H, Crooker BA (2007) Effects of genetic selection for milk yield on somatotropin, insulin-like growth factor-I, and placental lactogen in Holstein cows. J Dairy Sci 90: 3314-3325.
42. Young CW (1977) Review of Regional Project NC-2. J Dairy Sci 60: 493-498.
Go to article

Authors and Affiliations

M.H. Emam
1 2
E. Shepley
1
M.M. Mahmoud
1 3
M. Ruch
1
S. Elmaghawry
2
W. Abdelrazik
2
A.M. Abdelaal
2
B.A. Crooker
4
L.S. Caixeta
1

  1. Department of Veterinary Population Medicine, University of Minnesota, Saint Paul, MN 55108, USA
  2. Department of Animal Medicine, Zagazig University, Zagazig 44511, Egypt
  3. Department of Animal Medicine, Beni-Suef University, Beni-Suef 62521, Egypt
  4. Department of Animal Science, University of Minnesota, Saint Paul, MN 55108, USA
Download PDF Download RIS Download Bibtex

Abstract

During the transition period, the cow’s body activates adaptive mechanisms aimed at adjusting to the changing demand for energy and nutrients, which are necessary for the growing fetus and the subsequent start of milk production. This time is also associated with an increased risk of metabolic diseases and reproductive disorders.
Our study aimed to identify prepartum and postpartum biochemical markers and weight loss patterns that could differentiate cows that would exhibit ultrasonographic signs of liver fatty infiltration during the latter half of the transition period.
The study was performed in a single herd of Holstein-Friesian cows and the animals were divided into two groups: CON (n=13) – cows without ultrasonographic signs of fatty liver, and FL (n=16) – cows with ultrasonographic signs of fatty liver. Backfat thickness and specific biochemical parameters were measured weekly from one week before parturition to 9 weeks postpartum.
Our study highlights the importance of using a combination of monitoring methods to assess the metabolic status of transition dairy cattle. The results showed that ultrasound measurements of backfat thickness, blood NEFA levels, glucose concentration, and AST activity were all different (p<0.05) between the control and FL groups, indicating the usefulness of these parameters in monitoring the health status of transition cows. Additionally, the results suggest that high prepartum glucose levels (4.99 mmol/l) could serve as a potential marker for future FL, while the elevated NEFA levels (0.51 mmol/l) and decreased AST activity (80.56 u/l) in FL animals indicate their potential as indicators of lipid mobilization and liver structural damage, respectively.
Go to article

Bibliography

1. Abuelo A, Hernández J, Benedito JL, Castillo C (2016) Association of oxidative status and insulin sensitivity in periparturient dairy cat-tle: an observational study. J Anim Physiol Anim Nutr (Berl) 100: 279-286.
2. Akbar H, Grala TM, Vailati Riboni M, Cardoso FC, Verkerk G, McGowan J, Macdonald K, Webster J, Schutz K, Meier S, Matthews L, Roche JR, Loor JJ (2015) Body condition score at calving affects systemic and hepatic transcriptome indicators of inflammation and nu-trient metabolism in grazing dairy cows. J Dairy Sci 98: 1019-1032.
3. Angeli E, Rodríguez FM, Rey F, Santiago G, Matiller V, Ortega HH, Hein GJ (2019) Liver fatty acid metabolism associations with re-productive performance of dairy cattle. Anim Reprod Sci 208: 106104.
4. Aschenbach JR, Kristensen NB, Donkin SS, Hammon HM, Penner GB (2010) Gluconeogenesis in dairy cows: the secret of making sweet milk from sour dough. IUBMB Life 62: 869-877.
5. Bezerra LR, de Oliveira Neto CB, de Araujo MJ, Edvan RL, de Oliveira WD, Pereira FB (2014) Major metabolic diseases affecting cows in transition period. Int J Biol 6: 85-94.
6. Bobe G, Young JW, Beitz DC (2004) Invited review: pathology, etiology, prevention, and treatment of fatty liver in dairy cows. J Dairy Sci 87: 3105-3124.
7. Braun U (2009) Ultrasonography of the liver in cattle. Vet Clin North Am Food Anim Pract 25: 591-609.
8. Brethour JR (1992) The repeatability and accuracy of ultrasound in measuring backfat of cattle. J Anim Sci 70: 1039-1044.
9. Ceciliani F, Lecchi C, Urh C, Sauerwein H (2018) Proteomics and metabolomics characterizing the pathophysiology of adaptive reactions to the metabolic challenges during the transition from late pregnancy to early lactation in dairy cows. J Proteomics 178: 92-106.
10. Contreras GA, Sordillo LM (2011) Lipid mobilization and inflammatory responses during the transition period of dairy cows. Comp Immunol Microbiol Infect Dis 34: 281-289.
11. Esposito G, Irons PC, Webb EC, Chapwanya A (2014) Interactions between negative energy balance, metabolic diseases, uterine health and immune response in transition dairy cows. Anim Reprod Sci 144: 60-71.
12. Gerspach C, Imhasly S, Gubler M, Naegeli H, Ruetten M, Laczko E (2017a) Altered plasma lipidome profile of dairy cows with fatty liver disease. Res Vet Sci 110: 47-59.
13. Gerspach C, Imhasly S, Klingler R, Hilbe M, Hartnack S, Ruetten M (2017b). Variation in fat content between liver lobes and compari-son with histopathological scores in dairy cows with fatty liver. BMC Vet Res 13: 98.
14. Hussein HA, Thurmann JP, Staufenbiel R (2020) 24-h variations of blood serum metabolites in high yielding dairy cows and calves. BMC Vet Res 16: 327.
15. Hussein HA, Westphal A, Staufenbiel R (2013) Relationship between body condition score and ultrasound measurement of backfat thickness in multiparous Holstein dairy cows at different production phases. Aust Vet J 91: 185-189.
16. Jawor P, Brzozowska A, Słoniewski K, Kowalski ZM, Stefaniak T (2016) Acute phase response in the primiparous dairy cows after re-peated percutaneous liver biopsy during the transition period. Pol J Vet Sci 19: 393-399.
17. Jorritsma R, Jorritsma H, Schukken YH, Bartlett PC, Wensing T, Wentink GH (2001) Prevalence and indicators of post partum fatty in-filtration of the liver in nine commercial dairy herds in the Netherlands Livest Prod Sci 68: 53-60.
18. Kida K (2003) Relationships of metabolic profiles to milk production and feeding in dairy cows. J Vet Med Sci 65: 671-677.
19. Komeilian MM, Sakha M, Nadalian MG, Veshkini A (2011) Hepatic ultrasonography of dairy cattle in postpartum period: finding the sonographic features of fatty liver syndrome. Aust J Basic Appl Sci 5: 701-706.
20. Luke TD, Rochfort S, Wales WJ, Bonfatti V, Marett L, Pryce JE.(2019) Metabolic profiling of early-lactation dairy cows using milk mid-infrared spectra. J Dairy Sci 102: 1747-1760.
21. Melendez P, Whitney M, Williams F, Pinedo P, Manriquez D, Moore SG, Lucy MC, Pithua P, Poock SE (2018) Technical note: Evalua-tion of fine needle aspiration cytology for the diagnosis of fatty liver in dairy cattle. J Dairy Sci 101: 4483-4490.
22. Oetzel GR (2007) Herd-level ketosis – diagnosis and risk factors. American Association of Bovine Practitioners 40th Annual Conf., Vancouver, BC 67-97.
23. Ospina PA, Nydam DV, Stokol T, Overton TR (2010) Associations of elevated nonesterified fatty acids and beta-hydroxybutyrate con-centrations with early lactation reproductive performance and milk production in transition dairy cattle in the northeastern United States. J Dairy Sci 93: 1596-1603
24. Pires JA, Delavaud C, Faulconnier Y, Pomiès D, Chilliard Y (2013) Effects of body condition score at calving on indicators of fat and protein mobilization of periparturient Holstein-Friesian cows. J Dairy Sci 96: 6423-6439.
25. Puppel K, Kuczyńska B (2016) Metabolic profiles of cow’s blood; a review. J Sci Food Agric 96: 4321-4328.
26. Raboisson D, Mounié M, Maigné E (2014) Diseases, reproductive performance, and changes in milk production associated with sub-clinical ketosis in dairy cows: a meta-analysis and review. J Dairy Sci 97: 7547-7563.
27. Raschka C, Ruda L, Wenning P, von Stemm CI, Pfarrer C, Huber K, Meyer U, Dänicke S, Rehage J (2016) In vivo determination of subcutaneous and abdominal adipose tissue depots in German Holstein dairy cattle. J Anim Sci 94: 2821-2834.
28. Redfern EA, Sinclair LA, Robinson PA (2021) Dairy cow health and management in the transition period: The need to understand the human dimension. Res Vet Sci 137: 94-101.
29. Reynolds CK, Aikman PC, Lupoli B, Humphries DJ, Beever DE (2003) Splanchnic metabolism of dairy cows during the transition from late gestation through early lactation. J Dairy Sci 86: 1201-1217.
30. Roche JR, Friggens NC, Kay JK, Fisher MW, Stafford KJ, Berry DP (2009) Invited review: Body condition score and its association with dairy cow productivity, health, and welfare. J Dairy Sci 92: 5769-5801.
31. Schröder UJ, Staufenbiel R (2006) Invited review: Methods to determine body fat reserves in the dairy cow with special regard to ultra-sonographic measurement of backfat thickness. J Dairy Sci 89: 1-14.
32. Sejersen H, Sørensen MT, Larsen T, Bendixen E, Ingvartsen KL (2012) Liver protein expression in dairy cows with high liver triglycer-ides in early lactation. J Dairy Sci 95: 2409-2421.
33. Siachos N, Oikonomou G, Panousis N, Banos G, Arsenos G, Valergakis GE (2021) Association of body condition score with ultra-sound measurements of backfat and longissimus dorsi muscle thickness in periparturient Holstein cows. Animals (Basel) 11: 818.
34. Stengärde L, Tråvén M, Emanuelson U, Holtenius K, Hultgren J, Niskanen R (2008) Metabolic profiles in five high-producing Swedish dairy herds with a history of abomasal displacement and ketosis. Acta Vet Scand 50: 31
35. Strieder-Barboza C, Zondlak A, Kayitsinga J, Pires AF, Contreras GA (2015) Lipid mobilization assessment in transition dairy cattle us-ing ultrasound image biomarkers. Livest. Sci 177: 159-164.
36. Stojevic Z, Piršljin J, Milinkovic-Tur S, Zdelar-Tuk M, Ljubic BB (2005) Activities of AST, ALT and GGT in clinically healthy dairy cows during lactation and in the dry period. Vet Arhiv 75: 67-73.
37. Tharwat M (2012) Ultrasonography as a diagnostic and prognostic approach in cattle and buffaloes with fatty infiltration of the liver. Pol J Vet Sci 15: 83-93.
38. Tharwat M, Endoh D, Oikawa S (2012) Hepatocyte apoptosis in dairy cows with fatty infiltration of the liver. Res Vet Sci 93: 1281-1286.
39. van Dorland HA, Richter S, Morel I, Doherr MG, Castro N, Bruckmaier RM (2009) Variation in hepatic regulation of metabolism dur-ing the dry period and in early lactation in dairy cows. J Dairy Sci 92: 1924-1940.
Go to article

Authors and Affiliations

D. Grzybowska
1
P. Sobiech
1
D. Tobolski
1

  1. Department and Clinic of Internal Diseases, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Oczapowskiego 14, 10-957 Olsztyn, Poland

This page uses 'cookies'. Learn more