Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 70
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

The inter-reservoir enrichment phenomenon was exploited to curtail the reservoir eutrophication process. The Plawnowice reservoir (South Poland - Upper Silesia Region) has an area of 225 ha, volume of 29 mln m3, and a depth of 15 meters. According to the monitoring results in the years 1993-1998 the reservoir was qualified as hypereutrophic. Beginning in December 2003 a bottom pipe for hypolimnetic withdrawal was installed. In the period 2004-2010 a negative phosphorous balance was achieved. The discharge load of total phosphorous was in the beginning twice as high as the inflowing. During the first eight years with an inflow of 75 Mg P, the removed load of total phosphorus was 103 Mg P. In effect the net balance was 28 Mg P. The load, in respect to the surface area, of 2.2 to 3.3 gP/m2 per year, was reduced to a negative load of - 0.48 to - 3.3 gP/m2. The hypolimnetic maximum concentration of orthophosphates equal to 1.254 mg P-PO4/dm3 in 2004, was reduced to 0.236 mg P-PO4/dm3 in 2011. The respective factors and rate of eutrophication curtailing, including changes of phosphorus compounds have been discussed. Also changes of pH and visibility of the Secchi disc are presented. It was concluded that the presented method of hypolimnetic withdrawal is a lasting and effective process

Go to article

Authors and Affiliations

Maciej Kostecki
Jan Suschka
Download PDF Download RIS Download Bibtex

Abstract

The aim of this study was to analyze the influence of water movement on both qualita-tive and quantitative occurrence of macrophytes in lakes. We studied four lakes differentiated in respect of water supply (two flow and two inflow).The investigation included: determination of the buffer zones of lakes, analysis of land use forms and layout of the buffer zone, floristic charac-teristic of lakes littoral, characteristic of phytolittoral types, analysis of physical and chemical parameters of lakes. The buffer zone of the flow lakes was dominated by farmland, but there was no land meadow. In the inflow lakes co-dominated fields and forests in the buffer zone. The in-flow lakes characterized by greater species diversity, density and biomass of emergent macro-phytes. In all investigated lakes, in the zone of water supply, analyzed features of macrophytes, and selected chemical parameters of water, reached the highest value.
Go to article

Authors and Affiliations

Andrzej Demetraki-Paleolog
Joanna Sender
Magda Garbowski
Marcin Kolejko
Download PDF Download RIS Download Bibtex

Abstract

The purpose of the study presented in the article is to implement modern hydrographic characteristics of freshwater of the Shatsk Lakes (28 lakes in Volyn Polissya, Ukraine) by typing water bodies according to the requirements of the EU Water Framework Directive, assessment of the chemical composition of lake water and bottom sediments (sapropel), determination of the opportunity for their recreational use in the special status of the district as a national park. Despite the presence of the two large lakes (Svityaz – 26.2 km 2 and Pulemetske – 15.5 km 2), very small lakes with a water surface area of less than 0.5 km 2 (64%) are dominating in the Shatsk group. Mineralisation of calcium-hydrocarbonate lake waters is 115–303 mg∙dm –3 and calcium-sulphate aqueous extract of sapropel is – 318–1451 mg∙dm –3. Using a Piper diagram, it was found that there is genetic homogeneity between surface and groundwater, indicating a significant share of groundwater in the water supply of lakes. There are eight species of sapropel deposits in 19 lakes of the district. A wide range of chemical composition and physical and mechanical properties of sapropel deposits of the Shatsk Lakes allow us to consider them as an important resource for agriculture and industry. We found that sapropel from Shatsk Lakes meets the requirements for therapeutic mud and can be used for therapeutic and health purposes.
Go to article

Authors and Affiliations

Valentyn Khilchevskyi
1
ORCID: ORCID
Leonid Ilyin
2
ORCID: ORCID
Mykhailo Pasichnyk
2
ORCID: ORCID
Myroslava Zabokrytska
2
ORCID: ORCID
Olga Ilyina
2
ORCID: ORCID

  1. Taras Shevchenko National University of Kyiv, Department of Hydrology and Hydroecology, Kyiv, Ukraine
  2. Lesya Ukrainka Volyn National University, Faculty of Geography, 13 Voli Avenue, 43025, Lutsk, Ukraine
Download PDF Download RIS Download Bibtex

Abstract

The relationships between epiphytic fauna and habitat conditions were studied in three oxbow lakes of Wieprz River (eastern Poland). Fauna associated with macrophytes showed low species richness (range 8–11 taxa dependently on site and season) usually observed in lakes of high water trophy. Densities of fauna were high (mean 71–5250 ind. 100 g DW-1), typical for shallow lakes with well developed submerged vegetation. In the domination structure prevailed Gastropoda (relative abundance 23–100%) and Chironomidae (relative abundance 8–87%). Re-dundancy analysis showed the significance of four environmental variables – temperature, dis-solved oxygen, Ptot and P-PO4 as determinants of abundance of epiphytic fauna.
Go to article

Authors and Affiliations

Monika Tarkowska-Kukuryk
Wojciech Płaska
Tomasz Mieczan
Jacek Rechulicz
Wojciech Pęczuła
Download PDF Download RIS Download Bibtex

Abstract

The role of two submerged macrophyte species (Ceratophyllum demersum and Potamogeton pectinatus) as biological factor affecting concentrations of P and chlorophyll a concentrations was tested under laboratory conditions. In general, after four weeks exposition, the significant reduction of TP, P-PO4 and chlorophyll a was observed in all experimental variants (aquaria with P. pectinatus, C. demersum and P. pecinatus + C. demersum), but the highest decrease of phosphorous compounds (TP, P-PO4) was noted in aquarium with C. demersum, whereas the highest decline of chlorophyll a concentration (biomass of phytoplankton) was observed in aquarium with C. demersum + P. pectinatus. Together with the reduction of chemical parameters the biomass of macrophytes as well mean length of plant shoots significantly increases. The highest growth of shoots and biomass showed C. demersum.
Go to article

Authors and Affiliations

Monika Tarkowska-Kukuryk
Wojciech Pęczuła
Tomasz Mieczan
Wojciech Płaska
Jacek Rechulicz
Download PDF Download RIS Download Bibtex

Abstract

Due to the significant role of macrophytes in the functioning of lake ecosystems studies have been undertaken to examine whether mutual dependence is present within emergent, floating-leaved, and submerged aquatic macrophytes. The study included 5 small lakes from Polesie Lubelskie region. The research included: qualitative analysis of macrophytes (area occupied by macrophytes, composition, range of individual plant groups of occurrence), quantitative analysis of macrophytes (biomass of macrophytes inhabiting the lake), analysis of distribution as well as characteristics diversity of shoreline and surrounding land use. Because of differences in the environmental conditions, mostly light availability, usage of buffer zone, among the three macrophyte groups, changes in biomass were analyzed in this work suggests that complementarity not competition drive the community. This phenomenon seems to occur only in macrophyte lakes where all three groups are present and the surrounding buffer zones remain natural. In lakes where one of the three groups of macrophytes were missing, it is likely that the ecological roles are fulfilled by other plant groups, such as phytoplankton. The studied lakes represent both phytoplanton and macrophyte type of lakes.
Go to article

Authors and Affiliations

Andrzej Demetraki-Paleolog
Joanna Sender
Marcin Kolejko
Download PDF Download RIS Download Bibtex

Abstract

Cyanobacterial blooms occur frequently in artificial lakes, especially in water reservoirs with small retention exposition to anthropopressure. The abundant occurrence of cyanobacteria is accompanied by danger of oxygen imbalance in the aquatic environment and the secretion of toxins that are possible threat to human health and life. Cyanobacterial cell growth depends on a number of physical (temperature, light exposure), chemical (pH, concentration of compounds containing nitrogen and phosphorus) and biological (the presence of other organisms) factors. This paper presents the results of the analysis of water from reservoirs located in southern Wielkopolska region (Pokrzywnica-Szałe, Gołuchów and Piaski-Szczygliczka). Some important physico-chemical parameters of water samples taken from investigated reservoirs as well as cyanotoxins concentration were determined. Furthermore, the cyanobacterial species were identified. There was also an attempt made to correlate the water parameters with the cyanobacteria development and cyanotoxins production. On the basis of the results obtained in the analyzed season, it can be concluded that water from Pokrzywnica and Gołuchów reservoirs was rich in nutrients, hence the intense cyanobacterial blooms and cyanotoxins in water were observed

Go to article

Authors and Affiliations

Dominik Szczukocki
Radosław Dałkowski
Barbara Krawczyk
Renata Juszczak
Luiza Kubisiak-Banaszkiewicz
Barbara Olejniczak
Grzegorz Andrijewski
Download PDF Download RIS Download Bibtex

Abstract

Plastics are materials with many properties that make them extremely popular in everyday life and various industries. Studies show that plastic debris is global pollution and widespread in virtually all ecosystems. This study aimed to assess the coastal sediments of Ełckie Lake in terms of the presence of microplastics. Samples of sediments (n = 37) from the coastal zone of Ełckie Lake were drawn from different areas, including urban, rural, and tourist locations, and beaches. After the coastal sediment samples taking, they were subjected to density separation, filtration, and visual evaluation using the Olympus BX63 fluorescent microscope. Particles were classified according to the category of visible characteristics of microplastics including size, shape and colour. The results of the study showed the presence of microplastics in 84% of the examined coastal sediment samples of Ełckie Lake. Fibres, flakes, granules, and foils (films) had found in 58%, 45%, 32%, and 13% of the samples that contained microplastic, respectively. The majority of the detected microplastic was 0.5–1 mm in size and black was the dominant colour. Spatial variability was perceived in microplastic concentrations, giving premises to the assumption of dependence between local human activity and the content of particles.
Go to article

Bibliography

Andrady, A.L., 2011. Microplastics in the marine environment. Marine Pollution Bulletin 62, 1596–1605.

Andrady, A.L., Neal, M.A., 2009. Applications and societal benefits of plastics. Philosophical Transactions of the Royal Society B: Biological Sciences 364, 1977–1984.

Ballent, A., Corcoran, P.L., Madden, O., Helm, P.A., Longstaffe, F.J., 2016. Sources and sinks of microplastics in Canadian Lake Ontario nearshore, tributary and beach sediments. Marine Pollution Bulletin 110, 383–395.

Bańkowska, A., 2007. Performance evaluation of the BIO-HYDRO structures in recultivation of the Elckie Lake. Przegląd Naukowy. Inżynieria i Kształtowanie Środowiska 16, 21–28 (in Polish with English summary).

Batel, A., Linti, F., Scherer, M., Erdinger, L., Braunbeck, T., 2016. Transfer of benzo[a]pyrene from microplastics to Artemia nauplii and further to zebrafish via a trophic food web experiment: CYP1A induction and visual tracking of persistent organic pollutants. Environmental Toxicology and Chemistry 35, 1656–1666.

Claessens, M., Meester, S. De, Landuyt, L. Van, Clerck, K. De, Janssen, C.R., 2011. Occurrence and distribution of microplastics in marine sediments along the Belgian coast. Marine Pollution Bulletin 62, 2199–2204.

Cole, M., Lindeque, P., Halsband, C., Galloway, T.S., 2011. Microplastics as contaminants in the marine environment: A review. Marine Pollution Bulletin 62, 2588–2597.

Collignon, A., Hecq, J.-H., Galgani, F., Collard, F., Goffart, A., 2014. Annual variation in neustonic micro- and meso-plastic particles and zooplankton in the Bay of Calvi (Mediterranean-Corsica). Marine Pollution Bulletin 79, 293–298.

Corradini, F., Meza, P., Eguiluz, R., Casado, F., Huerta-Lwanga, E., Geissen, V., 2019. Evidence of microplastic accumulation in agricultural soils from sewage sludge disposal. Science of the Total Environment 671, 411–420.

da Costa, J.P., Duarte, A.C., Rocha-Santos, T.A.P., 2017. Microplastics – Occurrence, Fate and Behaviour in the Environment. Comprehensive Analytical Chemistry 75, 1–24.

Derraik, J.G.B., 2002. The pollution of the marine environment by plastic debris: A review. Marine Pollution Bulletin 44, 842–852.

Desforges, J.P.W., Galbraith, M., Ross, P.S., 2015. Ingestion of Microplastics by Zooplankton in the Northeast Pacific Ocean. Archives of Environmental Contamination and Toxicology 69, 320–330.

Ding, L., Mao, R. F., Guo, X., Yang, X., Zhang, Q., Yang, C., 2019. Microplastics in surface waters and sediments of the Wei River, in the northwest of China. Science of the Total Environment 667, 427–434.

Duis, K., Coors, A., 2016. Microplastics in the aquatic and terrestrial environment: sources (with a specific focus on personal care products), fate and effects. Environmental Sciences Europe 28, 1–25.

Dümichen, E., Barthel, A.K., Braun, U., Bannick, C.G., Brand, K., Jekel, M., Senz, R., 2015. Analysis of polyethylene microplastics in environmental samples, using a thermal decomposition method. Water Research 85, 451–457.

Dunalska, J.A., 2019. Lake restoration – theory and practice. Warszawa. Wydawnictwo Polskiej Akademii Nauk (in Polish with English summary).

Eerkes-Medrano, D., Thompson, R.C., Aldridge, D.C., 2015. Microplastics in freshwater systems: A review of the emerging threats, identification of knowledge gaps and prioritisation of research needs. Water Research 75, 63–82.

Efimova, I., Bagaeva, M., Bagaev, A., Kileso, A., Chubarenko, I.P., 2018. Secondary microplastics generation in the sea swash zone with coarse bottom sediments: Laboratory experiments. Frontiers in Marine Science 5, 313.

Faure, F., Corbaz, M., Baecher, H., De Alencastro, L.F., 2012. Pollution due to plastics and microplastics in lake Geneva and in the Mediterranean sea. Archives des Sciences 65, 157–164.

Faure, F., Demars, C., Wieser, O., Kunz, M., De Alencastro, L.F., 2015. Plastic pollution in Swiss surface waters: Nature and concentrations, interaction with pollutants. Environmental Chemistry 12, 582–591.

Fischer, E.K., Paglialonga, L., Czech, E., Tamminga, M., 2016. Microplastic pollution in lakes and lake shoreline sediments – a case study on Lake Bolsena and Lake Chiusi (central Italy). Environmental Pollution 213, 648–657.

Free, C.M., Jensen, O.P., Mason, S.A., Eriksen, M., Williamson, N.J., Boldgiv, B., 2014. High-levels of microplastic pollution in a large, remote, mountain lake. Marine Pollution Bulletin 85, 156–163.

GESAMP, 2015. Sources, fate and effects ofmicroplastics in the marine environment: a global assessment. London: IMO/FAO/UNESCO- IOC/UNIDO/WMO/IAEA/UN/UNEP/UNDP Joint Group of Experts on the Scientific Aspects of Marine Environmental Protection.

Hidalgo-Ruz, V., Gutow, L., Thompson, R.C., Thiel, M., 2012. Microplastics in the marine environment: A review of the methods used for identification and quantification. Environmental Science and Technology 46, 3060–3075.

Horton, A.A., Walton, A., Spurgeon, D.J., Lahive, E., Svendsen, C., 2017. Microplastics in freshwater and terrestrial environments: Evaluating the current understanding to identify the knowledge gaps and future research priorities. Science of the Total Environment 586, 127–141.

Imhof, H.K., Ivleva, N.P., Schmid, J., Niessner, R., Laforsch, C., 2013. Contamination of beach sediments of a subalpine lake with microplastic particles. Current Biology 23, R867–R868.

Klein, S., Worch, E., Knepper, T.P., 2015. Occurrence and spatial distribution of microplastics in river shore sediments of the rhine main area in Germany. Environmental Science and Technology 49, 6070–6076.

Lee, H., Shim, W.J., Kwon, J.H., 2014. Sorption capacity of plastic debris for hydrophobic organic chemicals. Science of the Total Environment 470–471, 1545–1552.

Lee, J., Hong, S., Song, Y.K., Hong, S.H., Jang, Y.C., Jang, M., Heo, N.W., Han, G.M., Lee, M.J., Kang, D., Shim, W.J., 2013. Relationships among the abundances of plastic debris in different size classes on beaches in South Korea. Marine Pollution Bulletin 77, 349–354.

Lenz, R., Enders, K., Beer, S., Sørensen, T.K., Stedmon, C.A., 2016. Analysis of Microplastic in the Stomachs of Herring and Cod from the North Sea and the Baltic Sea. Lyngby: DTU Aqua 1–30.

Li, J., Liu, H., Paul Chen, J., 2018. Microplastics in freshwater systems: A review on occurrence, environmental effects, and methods for microplastics detection. Water Research 137, 362–374.

Lin, L., Zuo, L.Z., Peng, J.P., Cai, L.Q., Fok, L., Yan, Y., Li, H.X., Xu, X.R., 2018. Occurrence and distribution of microplastics in an urban river: A case study in the Pearl River along Guangzhou City, China. Science of the Total Environment 644, 375–381.

Magnusson, K., Eliasson, K., Fråne, A., Haikonen, K., Hultén, J., Olshammar, M., Stadmark, J., Voisin, A., 2016. Swedish sources and pathways for microplastics to the marine environment A review of existing data. IVL Swedish Environmental Research Institute,Report C 183, 1–87.

Mathalon, A., Hill, P., 2014. Microplastic fibers in the intertidal ecosystem surrounding Halifax Harbor, Nova Scotia. Marine Pollution Bulletin 81, 69–79.

Moore, C.J., 2008. Synthetic polymers in the marine environment: A rapidly increasing, long-term threat. Environmental Research 108, 131–139.

Napper, I.E., Bakir, A., Rowland, S.J., Thompson, R.C., 2015. Characterisation, quantity and sorptive properties of microplastics extracted from cosmetics. Marine Pollution Bulletin 99, 178–185.

Napper, I.E., Thompson, R.C., 2016. Release of synthetic microplastic plastic fibres from domestic washing machines: Effects of fabric type and washing conditions. Marine Pollution Bulletin 112, 39–45.

Nizzetto, L., Futter, M., Langaas, S., 2016. Are Agricultural Soils Dumps for Microplastics of Urban Origin? Environmental Science and Technology 50, 10777–10779.

Novotny, T.E., Lum, K., Smith, E., Wang, V., Barnes, R., 2009. Cigarettes butts and the case for an environmental policy on hazardous cigarette waste. International Journal of Environmental Research and Public Health 6, 1691–1705.

Peters, C.A., Bratton, S.P., 2016. Urbanization is a major influence on microplastic ingestion by sunfish in the Brazos River Basin, Central Texas, USA. Environmental Pollution 210, 380–387.

Piñon-Colin, T. de J., Rodriguez-Jimenez, R., Rogel-Hernandez, E., Alvarez-Andrade, A., Wakida, F.T., 2020. Microplastics in stormwater runoff in a semiarid region, Tijuana, Mexico. Science of the Total Environment 704, 135411.

PlasticsEurope, 2019. Plastics – the Facts 2019: An analysis of European plastics production, demand and waste data. Report, 1–42.

Rochman, C.M., Browne, M.A., Halpern, B.S., Hentschel, B.T., Hoh, E., Karapanagioti, H.K., Rios-Mendoza, L.M., Takada, H., Teh, S., Thompson, R.C., 2013. Policy: Classify plastic waste as hazardous. Nature 494, 169–170.

Rodrigues, M.O., Abrantes, N., Gonçalves, F.J.M., Nogueira, H., Marques, J.C., Gonçalves, A.M.M., 2018. Spatial and temporal distribution of microplastics in water and sediments of a freshwater system (Antuã River, Portugal). Science of the Total Environment 633, 1549–1559.

Sruthy, S., Ramasamy, E. V., 2017. Microplastic pollution in Vembanad Lake, Kerala, India: The first report of microplastics in lake and estuarine sediments in India. Environmental Pollution 222, 315–322.

Tanaka, K., Takada, H., Yamashita, R., Mizukawa, K., Fukuwaka, M. aki, Watanuki, Y., 2013. Accumulation of plastic-derived chemicals in tissues of seabirds ingesting marine plastics. Marine Pollution Bulletin 69, 219–222.

Turner, S., Horton, A.A., Rose, N.L., Hall, C., 2019. A temporal sediment record of microplastics in an urban lake, London, UK. Journal of Paleolimnology 61, 449–462.

van Wezel, A., Caris, I., Kools, S.A.E., 2016. Release of primary microplastics from consumer products to wastewater in the Netherlands. Environmental Toxicology and Chemistry 35, 1627–1631.

Vaughan, R., Turner, S.D., Rose, N.L., 2017. Microplastics in the sediments of a UK urban lake. Environmental Pollution 229, 10–18.

Wang, J., Peng, J., Tan, Z., Gao, Y., Zhan, Z., Chen, Q., Cai, L., 2017a. Microplastics in the surface sediments from the Beijiang River littoral zone: Composition, abundance, surface textures and interaction with heavy metals. Chemosphere 171, 248–258.

Wang, J., Tan, Z., Peng, J., Qiu, Q., Li, M., 2016. The behaviors of microplastics in the marine environment. Marine Environmental Research 113, 7–17.

Wang, W., Ndungu, A.W., Li, Z., Wang, J., 2017b. Microplastics pollution in inland freshwaters of China: A case study in urban surface waters of Wuhan, China. Science of the Total Environment 575, 1369–1374.

Xiong, X., Zhang, K., Chen, X., Shi, H., Luo, Z., Wu, C., 2018. Sources and distribution of microplastics in China’s largest inland lake – Qinghai Lake. Environmental Pollution 235, 899–906.

Yonkos, L.T., Friedel, E.A., Perez-Reyes, A.C., Ghosal, S., Arthur, C.D., 2014. Microplastics in four estuarine rivers in the chesapeake bay, U.S.A. Environmental Science and Technology 48, 14195–14202.

Yu, X., Peng, J., Wang, J., Wang, K., Bao, S., 2016. Occurrence of microplastics in the beach sand of the Chinese inner sea: The Bohai Sea. Environmental Pollution 214, 722–730.

Yuan, W., Liu, X., Wang, W., Di, M., Wang, J., 2019. Microplastic abundance, distribution and composition in water, sediments, and wild fish from Poyang Lake, China. Ecotoxicology and Environmental Safety 170, 180–187.

Yurtsever, M., 2019. Tiny, shiny, and colorful microplastics: Are regular glitters a significant source of microplastics? Marine Pollution Bulletin 146, 678–682.

Zbyszewski, M., Corcoran, P.L., Hockin, A., 2014. Comparison of the distribution and degradation of plastic debris along shorelines of the Great Lakes, North America. Journal of Great Lakes Research 40, 288–299.

Zhang, K., Su, J., Xiong, X., Wu, X., Wu, C., Liu, J., 2016. Microplastic pollution of lakeshore sediments from remote lakes in Tibet plateau, China. Environmental Pollution 219, 450–455.

Zhang, K., Xiong, X., Hu, H., Wu, C., Bi, Y., Wu, Y., Zhou, B., Lam, P.K.S., Liu, J., 2017. Occurrence and Characteristics of Microplastic Pollution in Xiangxi Bay of Three Gorges Reservoir, China. Environmental Science and Technology 51, 3794–3801.

Zhou, Q., Zhang, H., Fu, C., Zhou, Y., Dai, Z., Li, Y., Tu, C., Luo, Y., 2018. The distribution and morphology of microplastics in coastal soils adjacent to the Bohai Sea and the Yellow Sea. Geoderma 322, 201–208.

Zobkov, M., Esiukova, E., 2017. Microplastics in Baltic bottom sediments: Quantification procedures and first results. Marine Pollution Bulletin 114, 724–732.
Go to article

Authors and Affiliations

Weronika Rogowska
1
Elżbieta Skorbiłowicz
1
Mirosław Skorbiłowicz
1
Łukasz Trybułowski
1

  1. Bialystok University of Technology, Faculty of Civil Engineering and Environmental Sciences, Department of Technology in Environmental Engineering, Wiejska 45E, 15-351 Białystok, Poland
Download PDF Download RIS Download Bibtex

Abstract

How environmental conditions influence current distributions of organisms at the local scale in sensitive High Arctic freshwaters is essential to understand in order to better comprehend the cascading consequences of the ongoing climate change. This knowledge is also important background data for paleolimnological assessments of long-Term limnoecological changes and in describing the range of environmental variability. We sampled five limnologically different freshwater sites from the Fuglebergsletta marine terrace in Hornsund, southern Svalbard, for aquatic invertebrates. Invertebrate communities were tested against non-climatic environmental drivers as limnological and catchment variables. A clear separation in the communities between the sites was observed. The largest and deepest lake was characterized by a diverse Chironomidae community but Cladocera were absent. In a pond with marine influence, crustaceans, such as Ostracoda, Amphipoda, and calanoid Copepoda were the most abundant invertebrates. Two nutrient-rich ponds were dominated by a chironomid, Orthocladius consobrinus, whereas themost eutrophic pond was dominated by the cladoceran Daphnia pulex, suggesting decreasing diversity along with the trophic status. Overall, nutrient related variables appeared to have an important influence on the invertebrate community composition and diversity, the trophic state of the sites being linked with their exposure to geese guano. Other segregating variables included water color, presence/absence of fish, abundance of aquatic vegetation and lake depth. These results suggest that since most of these variables are climate-driven at a larger scale, the impacts of the ongoing climate change will have cumulative effects on aquatic ecosystems.
Go to article

Authors and Affiliations

Tomi P. Luoto
Mimmi Oksman
Antti E.K. Ojala
Download PDF Download RIS Download Bibtex

Abstract

Lakes can be restored by the aeration method with the use of wind driven pulverising aerators. The method allows for moderate oxygenation of hypolimnion waters and it may be part of an integrated surface waters restoration system. The paper attempts to use the author’s method of maximum wind speeds to assess the volumetric flow of water through the aerator pulverisation mechanism. The study was conducted in 2018 in windy conditions of Lake Swarzędzkie. The introduction to the paper includes the characteristic of the lake and discusses the construction and operation of the wind driven pulverising aerator. Based on the maximum wind speed model, the theoretical capacity of the machine was calculated, which in the conditions of Lake Swarzędzkie was less than 111,500 m3 per year. Based on maximum wind speeds, the method of assessing the efficiency of the wind driven pulverising aerator is suitable for determining the volumetric flow rate of the pulverisation unit. This can significantly facilitate the planning of water reservoir restoration.
Go to article

Authors and Affiliations

Andrzej Osuch
1
ORCID: ORCID
Ewa Osuch
1
ORCID: ORCID
Piotr Rybacki
2
ORCID: ORCID
Marcin Herkowiak
3
ORCID: ORCID
Emilia Osuch
4

  1. Poznań University of Life Sciences, Department of Biosystems Engineering, 50 Wojska Polskiego St., 60-637 Poznań, Poland
  2. Poznań University of Life Sciences, Department of Agronomy, Poznań, Poland
  3. Institute of Technology and Life Sciences – National Research Institute, Falenty, Poland
  4. Vocational School Complex No 6, names Joachim Lelewel in Poznań, Poland
Download PDF Download RIS Download Bibtex

Abstract

In this study we compared chydorid cladoceran (Chydoridae) taxa and assemblages from sediments of 6 Polish and 6 Finnish lakes and investigated if the difference in climate of these two countries can be detected in the cladoceran data. The data were analysed in terms of I) average relative proportions of chydorid taxa during the history of each lake and by 2) redundancy analysis (RDA) to explain the present effect of environmental variables (altitude, area, maximum depth, mean annual temperature, mean summer temperature and length of the growing season) on species abundances. The redundancy analysis (RDA) enabled us to distinguish groups of taxa I) with a high thermal preference 2) associated with small, cold-water lakes and 3) associated with shallow lakes. There are clear differences in the dominant chydorid taxa and in the relative proportions of many other chydorid taxa between the two countries since the end of the last glaciation. Although these differences first of all appear to reflect the climatic difference, the influence of many other environmental factors, controlling the living conditions of particular chydorids have been raised and considered. Further studies with larger data are needed before the role of climate can be reliably separated from other elements of environment.
Go to article

Authors and Affiliations

Kaarina Sarmaja-Korjonen
Krystyna Szeroczyńska
Michał Gąsiorowski
Download PDF Download RIS Download Bibtex

Abstract

Plastic is present everywhere. What happens to it and what impact does it have on the world around us?
Go to article

Authors and Affiliations

Wojciech Pol
1
Karolina Mierzyńska
1

  1. Faculty of Biology, University of Białystok
Download PDF Download RIS Download Bibtex

Abstract

The oxygen and chlorophyll a contents. pH, temperature and transparency were studied in Lake Rzuno in the period from June 1998 - September I 999. This lake has a very strong thermal stratification and weaker oxygenic stratification. The degree of surface water saturation with oxygen was rather small (max. 136%) but the oxygen conditions in the whole Lake Rzuno were good because the total lack of oxygen is noted only in summer and only below 20 m depth. Whereas during autumn and spring circulation the oxygen concentration reaches 5 mg O, drn' al the bottom. The correlation between visibility of Secchi disc and chlorophyll a concentration featured high correlation indicator (r = -0.87). The awerage water transparency, low oxygen deficit and small changes in water reaction show that this lake has moderate eutrophic character.
Go to article

Authors and Affiliations

Jan Trojanowski
Janusz Bruski
Download PDF Download RIS Download Bibtex

Abstract

The Hoglandvatnet and Ålandvatnet are genetically associated with the action of a large ice stream issuing from Mittag-Lefflerbreen towards Lomonosovfonna as far nortwards as Austfjorden. The accomplished investigations permit water properties to be described for Hoglandvatnet and Ålandvatnet, as well as the chemical composition of the basin waters to be correlated with lithologic diversity of the surrounding massifs and the composition of glacier water feeding them. Water of Hoglandvatnet has a rather uniform ion composition. It is sulphate-calcium water. Low mineral contents of glacier water and that flowing through crystalline rocks of Framstaken and feeding the basin result in its less marked effect on the Hoglandvatnet water, compared with highly mineralized water of streams issuing from Trikolorfjellet and Tarantellen. Water of Ålandvatnet has a somewhat different quantitative ion composition than that of Hoglandvatnet. It is calcium-sulphate-bicarbonate water which is richer in the bicarbonate ion than the Hoglandvatnet waters. This is most likely due to the influence of bicarbonate water of Ålandelva and glacier water feeding the basin. It can also be the result of a smaller contribution from highly mineralized calcium-sulphate water issuing from Trikolorfjellet.

Go to article

Authors and Affiliations

Anna Stankowska
Download PDF Download RIS Download Bibtex

Abstract

Exploitation of lignite within the area of Muskau Arch, carried out from the mid-nineteenth century, contributed to the transformation of the natural environment and changes in water regime. In the post-mining subsidences pit lakes were formed. The chemical composition of waters is a consequence of the intensive weathering of pyrite (FeS2), which is present in Miocene lignite-bearing rock forming the embankments of the lakes. This process leads to the formation of Acid Mine Drainage (AMD) and finally acidification of lake waters.

This paper presents results of the identification of hydrogeochemical processes affecting the chemistry of waters from these reservoirs carried out using the speciation and statistical (cluster and factor) analyses. Cluster analysis allowed to separate from the analyzed group of anthropogenic reservoirs 7 subgroups characterized by a similar chemical composition of waters. The major processes affecting the chemistry of waters were identified and interpreted with help of factor and speciation analysis of two major parameters (iron and sulfur).

Go to article

Authors and Affiliations

Sylwia Lutyńska
Krzysztof Labus
Download PDF Download RIS Download Bibtex

Abstract

The research was conducted in a relatively small (26.8 ha) but quite deep (17.3 m) Lake Długie in Olsztyn, Poland. For over 20 years the lake was collecting sewage which eventually caused its complete degradation. In 1987-2000 the lake was restored using the artificial aeration method with destratification of water. The results showed that the artificial aeration effectively limited the internal loading. Application of this restoration method resulted in reduction of phosphorus compounds concentrations in the analyzed water strata. The decrease of TP in bottom sediments (to the level of 3-4 mg P g·' DW) was probably associated with the fact that a new layer of sediments was created, reflecting a change in the aquatic conditions caused by the restoration. The investigations conducted in the reference years showed that the changes were not permanent. A high concentration of phosphorus compounds in bottom sediments, low sorptivc capacity and a tendency to oxygen deficiency, indicate that further possibility to decrease the amount of phosphorus compounds in the lake by this restoration method is limited.
Go to article

Authors and Affiliations

Renata Brzozowska
Helena Gawrońska
Download PDF Download RIS Download Bibtex

Abstract

Studied was a small (4.6 ha) meromictic lake situated in a deep land hollow surrounded by a highinclination slope. The lake was made shallower two times (from 20 to 18 m) by collapsed shores. It is fed by underground waters and has relatively constant outflow. Limited water dynamics reduced the epilimnion thickness (from 4 to 2 m) and influenced the monimolimnion setting below 13 m depth with a characteristic small (0.2°C) temperature increase in the vertical profile and a permanent deoxygenation of the water below 7-11 m depth. The relationship between the organic matter parameters BOD; and COD-Mn before the shore collapse revealed the dominance of matter produced in the reservoir. In the final period the situation was opposite. In the monimolimnion allochthonous matter accumulated which due to anaerobic decomposition generated large amounts of ammonium. Observed in the same water layer was also a decrease of the conductivity.
Go to article

Authors and Affiliations

Renata Tandyrak
Mariusz Teodorowicz
Joanna Gorchowska
Download PDF Download RIS Download Bibtex

Abstract

In 2002 the circulation of nutrients and their balance was studied in a large, shallow, eutrophic Lake Gardno. It was determined that throughout a year 1516 Mg of total nitrogen and 155 Mg of total phosphorus reach the lake. Approximately 67% of nitrogen and 87% of phosphorus reaching the lake flows out of it, the rest remains in the lake. About 45% of the total loss of nitrogen results from denitrification, and about 53% from sedimentation. The greatest effect on the circulation of nutrients in Lake Gardno is exerted by the mixing of water caused by strong winds resulting in the upward movement of the surface layers of bottom sediments. This causes increased resuspension and sedimentation, which mask similar processes resulting from the outer load of nutrients and from autochtonie processes and products, which are one or two orders ofa magnitude smaller.
Go to article

Authors and Affiliations

Jan Trojanowksi
Czesława Trojanowska

This page uses 'cookies'. Learn more