Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 200
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

The subject of the work is the analysis of thermomechanical bending process of a thin-walled tube made of X5CrNi18-10 stainless steel. The deformation is produced at elevated temperature generated with a laser beam in a specially designed experimental setup. The tube bending process consists of local heating of the tube by a moving laser beam and simultaneous kinematic enforcement of deformation with an actuator and a rotating bending arm. During experimental investigations, the resultant force of the actuator and temperature at the laser spot are recorded. In addition to experimental tests, the bending process of the tube was modelled using the finite element method in the ABAQUS program. For this purpose, the tube deformation process was divided into two sequentially coupled numerical simulations. The first one was the heat transfer analysis for a laser beam moving longitudinally over the tube surface. The second simulation described the process of mechanical bending with the time-varying temperature field obtained in the first simulation. The force and temperature recorded during experiments were used to verify the proposed numerical model. The final stress state and the deformation of the tube after the bending process were analyzed using the numerical solution. The results indicate that the proposed bending method can be successfully used in forming of the thin-walled profiles, in particular, when large bending angles and a small spring-back effect are of interest.

Go to article

Authors and Affiliations

J. Widłaszewski
M. Nowak
Z. Nowak
P. Kurp
Download PDF Download RIS Download Bibtex

Abstract

Naukowcy specjalizują się w coraz węższych dziedzinach i często trudno się zrozumieć fizykowi cząstek elementarnych z fizykiem półprzewodników, a tym bardziej fizykowi z biologiem czy lekarzem. Dlatego prace interdyscyplinarne są trudne. A jednak czasem się udają. Na przykład uczonym z Instytutu Wysokich Ciśnień PAN.

Go to article

Authors and Affiliations

Witold Trzeciakowski
Download PDF Download RIS Download Bibtex

Abstract

Although laser scanning ideas and hardware solutions are well-known to experts in the field, there is still a large area for optimization. Especially, if long-range and high-resolution scanning is considered, the smallest defects in optical quality should be perfected. On the other hand, the simplicity, reliability, and finally the cost of the solution plays an important role, too. In this paper, a very simple but efficient method of optical correction is presented. It is dedicated to laser scanners operating from inside cylindrical glass domes. Such covers normally introduce aberrations into both the laser beam and receiving optics. If these effects are uncorrected, the laser scanner performance is degraded both in terms of angular resolution and maximum range of operation. It may not be critical for short-range scanning applications; however, if more challenging concepts are considered, this issue becomes crucial. The proposed method does not require sophisticated optical solutions based on aspheric or freeform components, which are frequently used for similar purposes in imaging-through-dome correction but is based on a simple cylindrical refractive correction plate.
Go to article

Authors and Affiliations

Jacek Wojtanowski
1
ORCID: ORCID

  1. Institute of Optoelectronics, Military University of Technology, ul. gen. Sylwestra Kaliskiego 2, 00-908 Warsaw, Poland
Download PDF Download RIS Download Bibtex

Abstract

A system for precise angular laser beam deflection by using a plane mirror is presented. The mirror was fixed to two supports attached to its edges. This article details the theoretical basis of how this deflector works. The spring deflection of a flat circular metal plate under a uniform axial buckling was used and the mechanical stress was generated by a piezoelectric layer. The characteristics of the deformation of the plate versus the voltage control of the piezoelectrics were examined and the value of the change resolution possible to obtain was estimated. An experimental system is presented and an experiment performed to examine this system. As a result, a resolution of displacement of 10-8 rad and a range of 10-5 rad were obtained.

Go to article

Authors and Affiliations

Olga Iwasińska-Kowalska
Download PDF Download RIS Download Bibtex

Abstract

In the paper an example of application of the Kalman filtering in the navigation process of automatically guided vehicles was presented. The basis for determining the position of automatically guided vehicles is odometry – the navigation calculation. This method of determining the position of a vehicle is affected by many errors. In order to eliminate these errors, in modern vehicles additional systems to increase accuracy in determining the position of a vehicle are used. In the latest navigation systems during route and position adjustments the probabilistic methods are used. The most frequently applied are Kalman filters.
Go to article

Authors and Affiliations

Mirosław Śmieszek
Magdalena Dobrzańska
Download PDF Download RIS Download Bibtex

Abstract

In this study, modification of the AZ91 magnesium alloy surface layer with a CO2 continuous wave operation laser has been taken on. The

extent and character of structural changes generated in the surface layer of the material was being assessed on the basis of both macro- and

microscopy investigations, and the EDX analysis. Considerable changes in the structure of the AZ91 alloy surface layer and the

morphology of phases have been found. The remelting processing was accompanied by a strong refinement of the structure and a more

uniform distribution of individual phases. The conducted investigations showed that the remelting zone dimensions are a result of the

process parameters, and that they can be controlled by an appropriate combination of basic remelting parameters, i.e. the laser power, the

distance from the sample surface, and the scanning rate. The investigations and the obtained results revealed the possibility of an effective

modification of the AZ91 magnesium alloy surface layer in the process of remelting carried out with a CO2 laser beam.

Go to article

Authors and Affiliations

J. Iwaszko
M. Strzelecka
Download PDF Download RIS Download Bibtex

Abstract

A concept of a highly sensitive and fast-response airborne optoelectronic hygrometer, based on the absorption spectroscopy with laser light tuned to an intense ro-vibronic absorption line of H2O in the 1391– 1393 nm range is presented. The target application of this study is airborne atmospheric measurements, in particular at the top of troposphere and in stratosphere. The cavity ring-down spectroscopy was used to achieve high sensitivity. In order to avoid interference of the results by water desorbed from the instrument walls, the open-path solution was applied. Tests of the instrument, performed in a climatic chamber, have shown some advantages of this concept over typical hygrometers designed for similar applications.

Go to article

Authors and Affiliations

Tadeusz Stacewicz
Paweł Magryta
Download PDF Download RIS Download Bibtex

Abstract

This document provides a simplified solution to the problem of calculation of laser hazard distances defined in the Advisory Circular 70-1B by the U.S. Federal Aviation Administration regarding atmospheric attenuation (assuming its constant value) and measurement uncertainties. The calculation approaches and examples presented in this document do not specify the procedure that should be followed in the case of atmospheric attenuation, nor do they take into account the uncertainties associated with the measured parameters. The analysis presented in the article complements to some extent AC 70-1B and can be used by those who need such a simplified solution regarding illumination of landing or taking off aircrafts. The article presents a sample analysis for a typical laser pointer, where the necessary parameters of the laser beam along with the appropriate uncertainties were determined in accordance with the methods accredited by the Polish Centre for Accreditation while the appropriate laser hazard distances were calculated taking into account different atmospheric attenuation coefficients.
Go to article

Authors and Affiliations

Jarosław Młyńczak
1

  1. Military University of Technology, Institute of Optoelectronics, Gen. S. Kaliskiego 2, 00-908 Warszawa, Poland
Download PDF Download RIS Download Bibtex

Abstract

Self-swept erbium fiber laser emitting around 1.56 μm is reported in detail. Both sweep directions were registered: pointing toward longer and shorter wavelengths, redshift and blueshift sweeping, respectively. We describe method of determining the direction of the wavelength drift using the monochromator based optical spectrum analyzer. Possible root for this sweeping regime, i.e., the gain modulation along active fiber, is discussed with the help of a simple model calculating the overall cavity gain that can predict the direction of the laser wavelength sweeping.

Go to article

Authors and Affiliations

P. Navratil
Pavel Peterka
ORCID: ORCID
P. Vojtisek
I. Kasik
J. Aubrecht
P. Honzatko
V. Kubecek
Download PDF Download RIS Download Bibtex

Abstract

An efficient operation of a Ho:YLF laser pumped by a Tm-doped fibre laser is reported. The research in a continuous-wave (CW) operation was done for two crystals of the same 0.5 at.%Ho dopant concentration and with different lengths (3×3×30 mm3 and 3×3×50 mm3). For an output coupling transmission of 20% and a crystal length of 50 mm, the maximum CWoutput power of 38.9 W for 81.4 W of incident pump power, corresponding to the slope efficiency of 52.3% and optical-to-optical conversion efficiency of 47.8% (determined with respect to the incident pump power) was achieved. The highest opti- cal-to-optical conversion efficiency of 70.2% with respect to the absorbed pump power was obtained. The influence of a heat-sink cooling water temperature on theCWlaser performance was studied. For a Q-switched operation the pulse repe- tition frequency (PRF) was changed from 2 to 10 kHz. The maximum average output power of 34.1 W at the PRF of 10 kHz was obtained for a 50 mm holmium crystal length. For 2 kHz PRF and 71.9 W of incident pump power, pulse energies of 13.7 mJ with a 21 ns FWHM pulse width corresponding to 652 kW peak power were recorded.

Go to article

Authors and Affiliations

J. Kwiatkowski
Download PDF Download RIS Download Bibtex

Abstract

The base map provides basic information about land to individuals, companies, developers, design engineers, organizations, and government agencies. Its contents include spatial location data for control network points, buildings, land lots, infrastructure facilities, and topographic features. As the primary map of the country, it must be developed in accordance with specific laws and regulations and be continuously updated. The base map is a data source used for the development and updating of derivative maps and other large scale cartographic materials such as thematic or topographic maps. Thanks to the advancement of science and technology, the quality of land surveys carried out by means of terrestrial laser scanning (TLS) matches that of traditional surveying methods in many respects. This paper discusses the potential application of output data from laser scanners (point clouds) to the development and updating of cartographic materials, taking Poland’s base map as an example. A few research sites were chosen to present the method and the process of conducting a TLS land survey: a fragment of a residential area, a street, the surroundings of buildings, and an undeveloped area. The entire map that was drawn as a result of the survey was checked by comparing it to a map obtained from PODGiK (pol. Powiatowy Ośrodek Dokumentacji Geodezyjnej i Kartograficznej – Regional Centre for Geodetic and Cartographic Records) and by conducting a field inspection. An accuracy and quality analysis of the conducted fieldwork and deskwork yielded very good results, which provide solid grounds for predicating that cartographic materials based on a TLS point cloud are a reliable source of information about land. The contents of the map that had been created with the use of the obtained point cloud were very accurately located in space (x, y, z). The conducted accuracy analysis and the inspection of the performed works showed that high quality is characteristic of TLS surveys. The accuracy of determining the location of the various map contents has been estimated at 0.02-0.03 m. The map was developed in conformity with the applicable laws and regulations as well as with best practice requirements.
Go to article

Authors and Affiliations

Przemysław Klapa
Bartosz Mitka
Download PDF Download RIS Download Bibtex

Abstract

The aim of the research was to analyze the possibility of using mobile laser scanning systems to acquire information for production and/or updating of a basic map and to propose a no-reference index of this accuracy assessment. Point clouds have been analyzed in terms of content of interpretation and geometric potential. For this purpose, the accuracy of point clouds with a georeference assigned to the base map objects was examined. In order to conduct reference measurements, a geodetic network was designed and also additional static laser scanning data has been used. The analysis of mobile laser scanning (MLS) data accuracy was conducted with the use of 395 check points. In the paper, application of the total Error of Position of the base-map Objects acquired with the use of MLS was proposed. Research results were related to reference total station measurements. The resulting error values indicate the possibility to use an MLS point cloud in order to accurately determine coordinates for individual objects for the purposes of standard surveying studies, e.g. for updating some elements of the base map content. Nevertheless, acquiring MLS point clouds with satisfying accuracy not always is possible, unless specific resolution condition is fulfilled. The paper presents results of accuracy evaluation in different classes of base-map elements and objects.
Go to article

Authors and Affiliations

Anna Fryskowska
Patryk Wróblewski
Download PDF Download RIS Download Bibtex

Abstract

The Bulletin of the Polish Academy of Sciences: Technical Sciences (Bull.Pol. Ac.: Tech.) is published bimonthly by the Division IV Engineering Sciences of the Polish Academy of Sciences, since the beginning of the existence of the PAS in 1952. The journal is peer‐reviewed and is published both in printed and electronic form. It is established for the publication of original high quality papers from multidisciplinary Engineering sciences with the following topics preferred: Artificial and Computational Intelligence, Biomedical Engineering and Biotechnology, Civil Engineering, Control, Informatics and Robotics, Electronics, Telecommunication and Optoelectronics, Mechanical and Aeronautical Engineering, Thermodynamics, Material Science and Nanotechnology, Power Systems and Power Electronics.

Journal Metrics: JCR Impact Factor 2018: 1.361, 5 Year Impact Factor: 1.323, SCImago Journal Rank (SJR) 2017: 0.319, Source Normalized Impact per Paper (SNIP) 2017: 1.005, CiteScore 2017: 1.27, The Polish Ministry of Science and Higher Education 2017: 25 points.

Abbreviations/Acronym: Journal citation: Bull. Pol. Ac.: Tech., ISO: Bull. Pol. Acad. Sci.-Tech. Sci., JCR Abbrev: B POL ACAD SCI-TECH Acronym in the Editorial System: BPASTS.

Go to article

Authors and Affiliations

Praveen Ailawalia
Sunil Kumar Sachdeva
Devinder Singh Pathania
Download PDF Download RIS Download Bibtex

Abstract

Laser triangulation is one of the machine vision measurement methods most commonly used in 3D quality control. However, considering its susceptibility to interference, it cannot be used in certain areas of industrial production e.g. very shiny surfaces. Thus, for the improvement of its applicability, a predictive algorithm of light profile segmentation was designed, where - as a result of using a'priori knowledge - the method becomes resistant to secondary reflexes.

The developed technique has been tested on selected parts with surfaces typical for the machine-building industry. The evaluation has been presented based on the surface representation (mapping) error analysis, using the difference between the obtained cloud of points and the nominal surface as processing data, as well as scatter of the discrete Gauss curvature.

Go to article

Authors and Affiliations

Jacek Reiner
Maciej Stankiewicz
Download PDF Download RIS Download Bibtex

Abstract

Biocompatible coatings produced on the basis of the chemically extracted natural hydroxyapatite (HAp) from the animal bones were deposited using multiplex method comprising glow discharge nitriding (GDN) of the titanium alloy substrate and pulsed laser deposition (PLD) of HAp on the formerly fabricated titanium nitride layer (TiN). The TiN interlayer plays an important role improving adhesion of HAp to substrate and preserves the direct contact of the tissue with metallic substrate in the case of possible cracking of HAp coating. Surface morphology of deposited layers, crystallographic texture and residual stress were studied in relation to the type of laser applied to ablation (Nd:YAG or ArF excimer), laser repetition, temperature of substrate and atmosphere in the reactive chamber.

Go to article

Authors and Affiliations

B. Major
T. Wierzchoń
W. Mróz
K. Haberko
R. Ebner
J. Bonarski
R. Major
A. Prokopiuk
Download PDF Download RIS Download Bibtex

Abstract

Strained layer InGaAs/GaAs SCH SQW (Separate Confinement Heterostructure Single Quantum Well) lasers were

grown by Molecular Beam Epitaxy (MBE). Highly reliable CW (continuous wave) 980-nm, broad contact, pump lasers were

fabricated in stripe geometry using Schottky isolation and ridge waveguide construction. Threshold current densities of the

order of Jth ≈ 280 A/cm2 (for the resonator length L = 700 um) and differential efficiency η= 0.40 W/A (41%) from one

mirror were obtained. The record wall-plug efficiency for AR/HR coated devices was equal to 54%. Theoretical estimations

of above parameters, obtained by numerical modelling of devices were Jth ≈ 210 A/cm and η = 0.47 W/A from one mirror,

respectively. Degradation studies revealed that uncoated and AR/HR coated devices did not show any appreciable degradation

after 1500 hrs of CW operation at 35oC heat sink temperature at the constant optical power (50 mW) conditions.

Go to article

Authors and Affiliations

M. Bugajski
B. Mroziewicz
K. Regiński
J. Muszalski
K. Kosiel
M. Zbroszczyk
T. Ochalski
T. Piwoński
D. Wawer
A. Szerling
E. Kowalczyk
H. Wrzesińska
M. Górska
Download PDF Download RIS Download Bibtex

Abstract

The paper deals with the basic set-up of single-frequency microchip laser - so called Lyot filter configuration. Description of its operation and practical realization is given. Some results obtained for Nd:YAG/KTP microchip laser are presented. The evidences of single-frequency operation and its limits are emphasized. Described construction constitutes the base for building the frequency stabilization of green 532 nm microchip laser.

Go to article

Authors and Affiliations

A.J. Antończak
J.Z. Sotor
K.M. Abramski
Download PDF Download RIS Download Bibtex

Abstract

In this contribution an optical method of controlling the state of soft biological tissues in real time, exposed to laser radiation is discussed. The method is based on the assumption that the change dynamics of the amplitude of the scattered diagnostic radiation (λ = 635 nm) is compatible with the change dynamics of the tissue inner structure exposed to the Nd:YAG laser radiation (λ = 1064 nm). In this method the measurement of the tissue temperature is omitted. Exemplary results of the laboratory research on this method and an interpretation of the results are presented.

Go to article

Authors and Affiliations

A. Zając
D. Podniesiński
D. Kęcik
M. Kęcik
J. Kasprzak
Download PDF Download RIS Download Bibtex

Abstract

Hybryd PLD method was used for deposition high quality thin Ti, TiN, Ti(C,N) and DLC coatings. The kinetic energy of the evaporated particles was controlled by application of variation of different reactive and non reactive atmospheres during deposition. The purpose was to improve adhesion by building a bridge between the real ceramic coating and the substrate. A new layer composition layout was proposed by application of a buffer, starting layer. Advanced HRTEM investigation based on high resolution transmission electron microscopy was used to reveal structure dependence on specific atmosphere in the reactive chamber. New experimental technique to examine the crystallographic orientation based on X-ray texture tomography was applied to estimate contribution of the atmosphere to crystal orientation. Using Dictyostelium discoideum cells as a model organism for specific and nonspecific adhesion, kinetics of shear flow-induced cell detachment was studied. For a given cell, detachment occurs for critical stress values caused by the applied hydrodynamic pressure above a threshold. Cells are then removed from the substrate with an apparent first-order rate reaction that strongly depends on the stress. The threshold stress depends on cell size and physicochemical properties of the substrate, but it is not affected by depolymerization of the actin and tubulin cytoskeleton.

Go to article

Authors and Affiliations

R. Major
F. Bruckert
J.M. Lackner
W. Waldhauser
M. Pietrzyk
B. Major
Download PDF Download RIS Download Bibtex

Abstract

In this paper, the two-temperature thermoelasticity model is proposed to a specific problem of a thermoelastic semi-infinite solid. The bounding plane surface of the semi-infinite solid is considered to be under a non-Gaussian laser pulse. Generalized thermoelasticity analysis with dual-phase-lags is taken into account to solve the present problem. Laplace transform and its inversion techniques are applied and an analytical solution as well as its numerical outputs of the field variables are obtained. The coupled theory and other generalized theory with one relaxation time may be derived as special cases. Comparison examples have been made to show the effect of dual-phase-lags, temperature discrepancy, laser-pulse and laser intensity parameters on all felids. An additional comparison is also made with the theory of thermoelasticity at a single temperature.

Go to article

Authors and Affiliations

Ashraf M. Zenkour
Ahmed E. Abouelregal
Download PDF Download RIS Download Bibtex

Abstract

Widely-tunable, fully-monolithic, mid-infrared (mid-IR) deference frequency generation source (DFG) is presented. By using a custom designed fiber-pigtailed periodically poled lithium niobate (PPLN) crystal module the idler beam was generated with an efficiency of 21%/W, yielding 2.6 mW of optical output power. The proposed all-fiber configuration radically simplified the optical frequency conversion setup, making it robust and easily configurable. The usefulness of the constructed source was verified by performing simultaneous wavelength modulation spectroscopy (WMS) laser trace gas detection of methane, near 2999 cm−1, and ethane, near 2997 cm−1, via two independently generated, tunable idler beams.

Go to article

Authors and Affiliations

K. Krzempek
G. Dudzik
A. Hudzikowski
A. Gluszek
K. Abramski
Download PDF Download RIS Download Bibtex

Abstract

We demonstrate MW-level, single resonance optical parametric oscillator, based on KTP Type-II crystal with noncritical phase-matching. The OPO is pumped by electro-optically Q-switched Nd:YAG slab laser providing 55 mJ of pulse energy. At the output, we achieved 28 mJ of signal pulse energy at 1.57 μm with 51% conversion efficiency, corresponding to 1.4 MW of peak power.

Go to article

Authors and Affiliations

M. Kaskow
L. Gorajek
W. Zendzian
J. Jabczynski
Download PDF Download RIS Download Bibtex

Abstract

A new approach to passive electromagnetic modelling of coupled–cavity quantum cascade lasers is presented in this paper. One of challenges in the rigorous analysis of such eigenvalue problem is its large size as compared to wavelength and a high quality factor, which prompts for substantial computational efforts. For those reasons, it is proposed in this paper to consider such a coupled-cavity Fabry-Perot resonant structure with partially transparent mirrors as a two-port network, which can be considered as a deterministic problem. Thanks to such a novel approach, passive analysis of an electrically long laser can be split into a cascade of relatively short sections having low quality factor, thus, substantially speeding up rigorous electromagnetic analysis of the whole quantum cascade laser. The proposed method allows to determine unequivocally resonant frequencies of the structure and the corresponding spectrum of a threshold gain. Eventually, the proposed method is used to elaborate basic synthesis rules of coupled–cavity quantum cascade lasers.

Go to article

Authors and Affiliations

M. Krysicki
B. Salski
P. Kopyt

This page uses 'cookies'. Learn more