Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 5
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

The study presents the results of theoretical investigations into lateral torsional buckling (LTB) of bi-symmetric I-beams, elastically restrained against warping at supports. Beam loading schemes commonly used in practice are taken into account. The whole range of stiffness of the support joints, from free warping to warping fully restrained, is considered. To determine the critical moment, the energy method is used. The function of the beam twist angle is described with power polynomials that have simple physical interpretation. Computer programs written in symbolic language for numerical analysis are developed. General approximation formulas are devised. Detailed calculations are performed for beams with end-plate joints. Critical moments determined with programs and approximation formulas are compared with the results obtained by other researchers and with those produced by FEM. Very good accuracy of results is obtained.

Go to article

Authors and Affiliations

R. Piotrowski
A. Szychowski
Download PDF Download RIS Download Bibtex

Abstract

The influence of sheeting made by sandwich panels on the lateral-torsional buckling resistance of hot rolled purlin was studied in this paper. The actual shear and torsional stiffness as well as resistance of connections between sandwich panel and purlins were considered in analysis. Parameters of these factors were determined using the finite element method, as well as by own experimental tests. Simple models with beam elements were used in LBA analysis to calculate the critical moments of the purlins. Advanced models with GMNIA analysis using shell elements was performed to simulate the behaviour of the purlins stabilized by sandwich panels. The results show that the stiffness of sheeting made by sandwich panels is insufficient to ensure the full protection of purlin against lateral-torsional buckling. The connections resistance also limited the ability of purlins stabilisation. Nevertheless including sandwich panels in purlin stability analysis results in a significant increase in their LTB resistance.
Go to article

Authors and Affiliations

Marcin Górski
1
Aleksander Kozłowski
2

  1. Rzeszów University of Technology, Faculty of Civil and Environmental Engineering and Architecture, ul. Poznańska 2, 35-084 Rzeszów, Poland
  2. Rzeszów University of Technology, Faculty of Civil and Environmental Engineeringand Architecture, ul. Poznańska 2, 35-084 Rzeszów
Download PDF Download RIS Download Bibtex

Abstract

Development of contemporary building industry and related search for new aesthetical and functional solutions of monumental buildings in the centers of large cities resulted in the interest in glass as a structural material. Attractiveness of glass as a building material may be derived from the fact, that it combines transparency and aesthetical look with other functional features. Application of glass results in modern look of building facades, improves the indoor comfort without limiting the availability of natural daylight. Wide implementation of the new high performance float flat glass manufacturing technology, in conjunction with increasing expectations of the construction industry relating to new glass functions, has led to significant developments in glass structures theory, cf. [1, 3, 4, 5, 9, 10]. Many years of scientific research conducted in European Union countries have been crowned with a report CEN/TC 250 N 1050 [2], compiled as a part of the work of European Committee for Standardization on the second edition of Eurocodes - an extension of the first edition by, among others, the recommendations for the above mentioned design of glass structures, in particular modern procedures for the design of glass building structures. The procedures proposed in the pre-code [2] are not widely known in Poland, and their implementation in the design codes should be verified at the country level. This task is undertaken in this paper.

Go to article

Authors and Affiliations

M. Gwóźdź
Download PDF Download RIS Download Bibtex

Abstract

Elastic lateral-torsional buckling of double-tee section structural steelworks has been widely investigated with regard to the major axis bending of single structural elements as a result of certain loading conditions. No specific attention has been paid to the general formulation in which an arbitrary span load pattern was associated with unequal end moments as a result of the moment distribution between structural members of the load bearing system.Anumber of analytical solutionswere developed on the basis of the Vlasov theory of thin-walled members. Since the accurate closed-form solutions of lateral-torsional buckling (LTB) of beams may only be obtained for simple loading and boundary conditions, more complex situations are treated nowadays by using numerical finite element methods (FEM). Analytical and numerical methods are frequently combined for the purpose of: a) verification of approximate analytical formulae or b) presentation the results in the form of multiple curve nomograms to be used in design practice. Investigations presented in this paper deal with the energy method applied to LTB of any complex loading condition of elements of simple end boundary conditions, bent about the major axis. Firstly, a brief summary of the second-order based energy equation dealt with in this paper is presented and followed by its approximate solution using the so-called refined energy method that in the case of LTB coincides with the Timoshenko’s energy refinement. As a result, the LTB energy equation shape functions of twist rotation and minor axis displacement are chosen such that they cover both the symmetric and antisymmetric lateral-torsional buckling modes. The latter modes are chosen in relation to two lowest LTB eigenmodes of beams under uniform major axis bending. Finally, the explicit form of the general solution is presented as being dependent upon the dimensionless bending moment equations for symmetric and antisymmetric components, and the in-span loads. Solutions based on the present investigations are compared for selected loading conditions with those obtained in the previous studies and verified with use of the LTBeam software. Conclusions are drawn with regard to the application of obtained closed-form solutions in engineering practice.
Go to article

Authors and Affiliations

Anna Barszcz
1
ORCID: ORCID
Marian Giżejowski
1
ORCID: ORCID
Malwina Pękacka
2

  1. Warsaw University of Technology, Faculty of Civil Engineering, Al. Armii Ludowej 16, 00-637 Warsaw, Poland
  2. Warsaw University of Technology Graduate, Faculty of Civil Engineering, Al. Armii Ludowej 16, 00-637 Warsaw, Poland
Download PDF Download RIS Download Bibtex

Abstract

Elastic instability of steel I-section members has been investigated with regard to axial compression, major axis bending as well as compression and major axis bending, based on the Vlasov theory of thin-walled members. Investigations presented in this paper deal with the energy method applied to the flexural-torsional buckling (FTB) problems of any complex loading case that for convenience of predictions is treated as a superposition of symmetric and antisymmetric components. Firstly, the review of energy equation formulations is presented for the elastic lateral-torsional buckling (LTB) of beams, then the most accurate beam energy equation, so-called the classical energy equation formulated for bisymmetric I-section beams is extended to cover also the beam-column out-of-plane stability problems, referred hereafter to FTB problems. Secondly, for the simple end boundary conditions, the shape functions of twist rotation and minor axis displacement are chosen such that they cover both symmetric and antisymmetric lateral-torsional buckling modes in relation to two lowest eigenvalues of the beam LTB in major axis bending. Finally, the explicit form of the general solution is presented being dependent upon the dimensionless bending moment equations for symmetric and antisymmetric components, and the load factor where the lower k index identifies the load case.
Go to article

Authors and Affiliations

Marian Antoni Giżejowski
1
Anna Maria Barszcz
1
Zbigniew Stachura
2

  1. Warsaw University of Technology, Faculty of Civil Engineering, Al. Armii Ludowej 16, 00-637 Warsaw, Poland
  2. Warsaw University of Technology, Faculty of Civil Engineering, Al. Armii Ludowej 16, 00-637 Warsaw

This page uses 'cookies'. Learn more