Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 4
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

A large number of infrastructural concrete buildings are protected against aggressive environments by coating systems. The functionality of these coating systems is mainly affected by the composition and thickness of the individual polymeric layers. For the first time ever, a mobile nuclear magnetic resonance (NMR) sensor allows a non-destructive determination of these important parameters on the building site. However, before this technique can be used on steel-reinforced concrete elements, the potential effect of the reinforcement on the measurement, i.e. the NMR signal, needs to be studied. The results show a shift of the NMR profile as well as an increase of the signals amplitude in the case of the reinforced samples, while calculating the thickness of concrete coating leading to identical results.

Go to article

Authors and Affiliations

J. Orlowsky
Download PDF Download RIS Download Bibtex

Abstract

In recent years, scattered light measurement technology has developed into a common method for measuring roughness, form and waviness on precision machined surfaces. Meanwhile, the application for the material structure evaluation of electrolytically anodized surfaces has also been considered. In this context,we present a novel approach to layer thickness measurement of naturally anodised aluminium surfaces. Our approach is based on the reflection intensity of the light beam, which penetrates the oxide layer and is reflected back from the surface as well as from the layer base. In the approach, a model for estimating reflection intensity I from the absorption coefficient is employed. The methodology is tested by comparing results to a layer thickness evaluation using metallographic preparation. Based on the proposed approach, we are able to measure intervals of layer thicknesses on naturally anodized aluminium surfaces without contact.
Go to article

Authors and Affiliations

Tobias Geisler
1
Martin Manns
1

  1. Universität Siegen, Fakultät IV, Lehrstuhl für Fertigungsautomatisierung und Montage, PROTECH-Institut für Produktionstechnik, Paul-Bonatz-Str. 9-11, 57076 Siegen, Germany
Download PDF Download RIS Download Bibtex

Abstract

Layers of silver particles are used in the studies on pathophysiology and treatment of diseases, both in pre-clinical and clinical conditions. Silver layers can be formed using different techniques and on different substrates. Deposition by magnetron sputtering on glass beads was used in this study. Silver absorption by the body was estimated by calculating the difference in thickness of the silver nanolayer deposited on a bead and measured before and after application of the bead in an animal model of gastrointestinal inflammation. Recommendations for the minimal thickness of silver nanolayer deposited on glass beads were worked out for further studies.

Go to article

Authors and Affiliations

Krzysztof Siczek
Wojciech Pawlak
Hubert Zatorski
Jakub Fichna
Download PDF Download RIS Download Bibtex

Abstract

This study is based on the investigation of AlSb layer thickness effect on heavy−hole light−hole (HH−LH) splitting and band gap energies in a recently developed N−structure based on InAs/AlSb/GaSb type II superlattice (T2SL) p−i−n photodetector.eFirst principle calculations were carried out tailoring the band gap and HH−LH splitting energies for two possible interface transition alloys of InSb and AlAs between InAs and AlSb interfaces in the superlattice. Results show that AlSb and InAs−GaSb layer thicknesses enable to control HH−LH splitting energies to desired values for Auger recombination process where AlSb/GaSb total layer thickness is equal to InAs layers for the structures with InSb and AlAs interfaces

Go to article

Authors and Affiliations

M.M. Alyoruk
Y. Ergun
M. Hostut

This page uses 'cookies'. Learn more