Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 11
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

The paper presents the toxicity changes of landfill leachate during landfill processes simulation as well as after Advanced Oxidation Processes implementation to the leachate. A bioluminescence toxicity test Toxalert®10 with the pure cultures of Vibrio fischeri was used. The significant difference in the leachate toxicity originating from acidogenic landfill phase in comparison to the methanogenic phase was noticed. The leachate ozonation led to the toxicity reductions. The hydrogen peroxide application caused the toxicity increase and slowed down the landfill processes.
Go to article

Authors and Affiliations

Katarzyna Kaczorek
Stanisław Ledakowicz
Download PDF Download RIS Download Bibtex

Abstract

Treatment of leachate from an exploited since 2004 landfill by using two methods of advanced oxidation processes was performed. Fenton’s reagent with two different doses of hydrogen peroxide and iron and UV/H2O2 process was applied. The removal efficiency of biochemically oxidizable organic compounds (BOD5), chemically oxidizable compounds using potassium dichromate (CODCr) and nutrient (nitrogen and phosphorus) was examined. Studies have shown that the greatest degree of organic compounds removal expressed as a BOD5 index and CODCr index were obtained when Fenton’s reagent with greater dose of hydrogen peroxide was used - efficiency was respectively 72.0% and 69.8%. Moreover, in this case there was observed an increase in the value of ratio of BOD5/CODCr in treated leachate in comparison with raw leachate. Application of Fenton’s reagent for leachate treatment also allowed for more effective removal of nutrients in comparison with the UV/H2O2 process.

Go to article

Authors and Affiliations

Barbara Pieczykolan
Izabela Płonka
Krzysztof Barbusiński
Magdalena Amalio-Kosel
Download PDF Download RIS Download Bibtex

Abstract

Lcachates from municipal solid waste landfills should be included in the group of strongly contaminated industrial wastewaters. This results form the presence of highly concentrated various organic and inorganic compounds, which frequently have toxic properties. Therefore, the proper purification of the leachates prior to their discharging to the environment is of great importance. One of the chemical methods that can be used for the purification of leachates is coagulation. The main objective of the experiments presented in the current study was to determine the effect of coagulation, combined with sedimentation, on the physicchemical and toxicological characteristics of leachates from one of a municipal solid waste landfill in Poland. Standard .jar-test" experiments were employed for coagulation. Polyaluminum chloride and ferric chloride were used as coagulants. Raw leachates as well as those after coagulation were tested for toxicity using a battery of tests embracing algal growth inhibition test, microbiotests and IQ Toxicity Tests with crustaceans and bacterial luminescence inhibition test (LUM!Stox). The studies carried out demonstrated that ferric chloride (0.92 g Fc3·/CODc, removed) is more effective technologically in the removal of organic compounds from lcachates than polyaluminum chloride (1.22 g AP'/CODc, removed). For optimal doses of coagulants the most advantageous coagulation effects were achieved at pH 6.5-6.6, adjusted with the use of NaOH. Coagulation conducted under optimal conditions allows for reducing the content of organic compounds, as expressed by CODc, values, from 40 to 84%. This effect of organic compound removal from leachatcs in the process of coagulation did not result in significant decrease of their toxicity, For the above reasons the coagulation process can be useful only as one of the clements· of a technological setup for the purification of leachates from municipal solid waste landfills. The battery of tests used in the studies proved usefulness for the evaluation of the toxicity of leachatcs with varied degree of contamination as well as at various stages of their purification.
Go to article

Authors and Affiliations

Jacek Wąsowski
Bożenna Słomczyńska
Tomasz Słomczyński
Download PDF Download RIS Download Bibtex

Abstract

The paper presents results obtained during experiments with constructed wetlands that were built and monitored on the site of a municipal landfill in Southern Poland. The wetland was filled with gravel and rock in which reeds, cattails and willow were planted. A control plot without vegetation was also constructed. Each wetland was loaded with a portion of the leachate generated by the landfill. Measurements of the leachate quality showed very high concentrations of several pollutants. Particularly high concentrations of BOD, COD, nitrogen, and heavy metals were measured. High pollutant levels were probably responsible for the demise of the willows, which were dead within several months of planting. The efficiency of pollution removal with detention time up to 24 h ranged from O to 87% based on decreasing concentration of selected parameters. However, the removal efficiency of the control plot was typically only several percent lower than the removal efficiencies of the plots with vegetation.
Go to article

Authors and Affiliations

Włodzimierz A. Wójcik
Download PDF Download RIS Download Bibtex

Abstract

These studies examined the concept of concentration and purification of several types of wastewater by freezing and thawing. The experiments demonstrated that freezing of contaminated liquid contributed to concentration of contaminants in solution as well as significant concentration and agglomeration of solid particles. A high degree of purification was achieved for many parameters. The results of comparative laboratory tests for single and multiple freezing are presented. It was found that there was a higher degree of concentration of pollutants in wastewater frozen as man-made snow than in bulk ice. Furthermore, the hypothesis that long storage time of liquid as snow and sufficient temperature gradient metamorphism allows for high efficiency of the concentration process was confirmed. It was reported that the first 30% of the melted liquid volume contained over 90% of all impurities. It gives great opportunities to use this method to concentrate pollutants. The results revealed that the application of this process in full scale is possible. Significant agglomeration of solid particles was also noted. Tests with clay slurry showed that repeated freezing and thawing processes significantly improve the characteristics of slurry for sedimentation and filtration.

Go to article

Authors and Affiliations

Janusz A. Szpaczyński
Jeffrey A. White
Caroline L. Côté
Download PDF Download RIS Download Bibtex

Abstract

The paper presents an impact of the metallurgical wastes dumping site on the following parts of the environment: air, soil and surface waters. Some of the methods used to prevent wastes interactions were showed. The results of the metallurgical wastes leachate samples research, in which toxic metal ions have been found, are presented results of examinations performed on water extracts derived from two types of metallurgical wastes were given. The chemical analysis of water extracts indicate exceeded concentration of toxic metals, such as: lead, arsenic, barium and others. Preliminary results of some metals elimination from the water extracts with PUROLITE ion-exchangers were also presented. The utilised acidous cationit with Na+ groups exchanges the Ba2+ ions in almost 90%, similar to S 930 ionit with chelating groups (Table 5 and 7). Whereas the anionit with hydroxyl groups removes the arsenic ions(V) from the solution with the 60% efficacy (Table 7).

Go to article

Authors and Affiliations

Stanisława Sanak-Rydlewska
Agnieszka Gala
Łukasz Wajda
Download PDF Download RIS Download Bibtex

Abstract

The leachate problem is important and difficult to solve in Poland and in the world. The composition and their properties leachates depend on the age of the landfill, type of waste, climatic conditions and the mode of operation of the landfill. A significant part of landfilled waste is subject to so-called humification. This process stabilizes organic substances in the landfill and creates humic substances that penetrate into the leachate. The leaks contain many toxic impurities, such as PAHs, pesticides, polychlorinated biphenyls and other substances hazardous to human health and life, which can be sorbed by humic substances. Leachates from three municipal landfills, differing in the characteristics of the stored waste, were studied. Fulvic acids (FAs) were extracted on the basis of affinity for specific solvents along with the use of sorption. The obtained acids were subjected to a qualitative analysis of the content of micro-impurities, essential elements forming the structure of the fulvic acid molecule, and their infrared spectra were tested. It has been noticed that with the age of waste deposited, the content of elemental carbon increases, and the amount of oxygen and hydrogen decreases. The degree of purity of fulvic acids was influenced by the time of waste storage, and the sulfur content depended on their characteristics. With the time of waste storage, the characteristics of the acids obtained were approaching humic acids, and the intensity of absorption bands clearly increased. The spectra obtained correlate well with those of fulvic acids available in the literature, and the findings provide scientific confirmation of the need for further research on the characteristics of fulvic acids.
Go to article

Bibliography

Anielak, A. (2019). Humic acids: extraction, analysis and importance in the environment as well as methods for their removal. Przemysł Chemiczny, 98 (10), pp. 1580-1586.
Anielak, A., Grzegorczuk, M. & Schmidt, R. (2008). The products of oxidation of fulvic acids with sodium chlorate(I) and dioxidane. Przemysł Chemiczny, 87 (4), pp. 702-706.
Anielak, A.M., Kryłów, M. & Łomińska-Płatek, D. (2018). Characterization of fulvic acids contained in municipal sewage purifi ed with activated sludge. Archives of Environmental Protection 44 (1), pp. 70-76. DOI 10.24425/118183
Araujo, B., Doumer, M. & Mangrich, A. (2017). Evaluation of the interactions between chitosan and humics in media for the controlled release of nitrogen fertilizer. Journal of Environmental Management, 190, pp. 122-131.
Baettker, E., Kozak, C., Knapik, H. & Aisse, M. (2020). Applicability of conventional and non-conventional parameters for municipal landfill leachate characterization. Chemosphere, 251, 126414
Bai, H., Chang, Q., Shi, B. & Sham, A. (2013). Effects of fulvic acid on growth performance and meat quality in growing-finishing pigs. Livestock Science, 158 (1-3), pp. 118-123.
Biedugnis, S., Podwójci, P. & Smolarkiewicz, M. (2003). Optimization of municipal waste management on a micro and macro-regional scale. Warsaw: Polish Academy of Sciences.
Claret, F., Tournassat, C., Crouzet, C., Gaucher, E., Schäfer, T., Braibant, G. & Guyonnet, D. (2011). Metal speciation in landfill leachates with a focus on the influence of organic matter. Waste Management, 31, pp. 2036-2045.
Collado, S., Nunez, D., Oulego, P., Riera, F. & Diaz, M. (2020). Effect of landfill leachate ageing on ultrafiltration performance and membrane fouling behaviour. Journal of Water Process Engineering, 36, 101291.
Dong-June, S., Yoon-Jim, K., Sang-Yee, H. & Dong-Hoon, L. (2007). Characterization of dissolved organic matter in leachate discharged from final disposal sites which contained municipal solid waste incineration residues. Journal of Hazardous Materials, 148, pp. 679 - 692.
Elahi, A., Arooj, I., Bukharo, D. & Rehman, A. (2020). Successive use of microorganisms to remove chromium from wastewater. Applied Microbiology and Biotechnology, 104, pp. 3729-3743.
Esparza-Soto, M. & Westerhoff, P. (2003). Biosorption of humic and fulvic acids to live activated sludge biomass. Water Research, 37, pp. 2301-2310.
Frączek, K. & Grzyb, J. (2009). Sanitary analyses of surface water in the influence area of municipal waste dump Barycz in Krakow. Ecological Chemistry and engineering A. , 16 (9), pp. 1107-1116.
Gautam, P., Kumar, S. & Lokhandwala, S. (2019). Advanced oxidation processes for treatment of leachate from hazardous waste landfill: A critical review. Journal of Cleaner Production, 237 (10), 117639.
Ghosh, P., Thakur, I. & Kaushik, A. (2017). Bioassays for toxicological risk assessment of landfill leachate: A review. Ecotoxicology and Environmental Safety, 141, pp. 259-270.
Gong, G., Yuan, X., Zhang, Y., Li, Y., Liu, W., Wang, M., Zhao, Y. & Xu, L. (2020). Characterization of coal-based fulvic acid and the. RSC Advances, 10, pp. 5468-5477.
Gong, G., Zhao, Y., Zhang, Y., Deng, B., Liu, W., Wang, M., Yuan, X. & Xu, L. (2020). Establishment of a molecular structure model for classified products of coal-based fulvic acid. Fuel, 267, 117210.
GUS. (2020). Central Statistical Office. Waste management in the urban and rural commune of Włoszczowa. Retrieved from: https://bdl.stat.gov.pl/BDL/dane/teryt/tablica#
GUS. (2020). Central Statistical Office. Wild dumps. Warszawa. Retrieved from: https://bdl.stat.gov.pl/BDL/metadane/cechy/3196#
Han Y.S., Lee, J.Y., Miller, C.J. & Franklin, L. (2009). Characterization of humic substances in landfill leachate and impact on the hydraulic conductivity of geosynthetic clay liners. Waste Manag. Res. , 27 (3), pp. 233-241.
He, M., Shi, Y. & Lin, C. (2008). Characterization of humic acids extracted from the sediments of the various rivers and lakes in China. Journal of Environmental Sciences, 20 (11), pp. 1294-1299.
Huo, S., Xi, B., Yu, H., He, L., Fan, S. & Liu, H. (2008). Characteristics of dissolved organic matter (DOM) in leachate with. Journal of Environmental Science, 20 (4), pp. 492-498.
Islam, M., Xu, Q. & Yuan, Q. (2020). Advanced biological sequential treatment of mature landfill leachate using aerobic activated sludge SBR and fungal bioreactor. Journal of Environmental Health Science and Engineering, 18, pp. 285-295.
Jayasooriya, R., Dilshara, M., Kang, C.-H., Lee, S., Choi, Y., Jeong, Y. & Kim, G.-Y. (2016). Fulvic acid promotes extracellular anti-cancer mediators from RAW 264.7 cells, causing to cancer cell death in vitro. International Immunopharmacology, 36, pp. 241-248.
Jin, J., Sun, K., Yang, Y., Wang, Z., Han, L., Wang, X., Wu, F. & Xing, B. (2018). Comparison between Soil- and Biochar-Derived Humic Acids: Composition, Conformation, and Phenanthrene Sorption. Environmental Science and Technology, 52 (4), pp. 1880-1888.
Kalousek, P., Schreiber, P., Vyhnanek, T., Trojan, V., Adamcova, D. & Veverkova, M. (2020). Effect of Landfill Leachate on the Growth Parameters in Two Selected Varieties of Fiber Hemp. International Journal of Environmental Research, 14, pp. 155-163.
Kapelewska, J. (2018). The landfill leachate as a potential source of pollution of the aquatic environment. Białystok: PhD dissertation. University of Bialystok. Faculty of Biology and Chemistry.
Khalil, C., Al Hageh, C., Korfali, S. & Khnayzer, R. (2020). Municipal leachates health risks: Chemical and cytotoxicity assessment from regulated and unregulated municipal dumpsites in Lebanon. Chemosphere, 208, pp. 1-13.
Kjeldsen, P., Barlaz, M., Rooker, A. B., Ledin, A. & Christensen, T. (2002). Present and long-term composition of MSW landfill leachate: a review. Critical Reviews in Environmental Science and Technology, 32 (4), pp. 297-336.
Klöcking, R. & Helbig, B. (2005). Medical aspect and applications of humic substances. [In:] A. Steinbüchel, & R. Marchessauldt. (Eds) Biopolymers for Medical and Pharmaceutical Applications, pp. 3-16. Weinheim, Germany: Wiley-VCH.
Klojzy – Kaczmarczyk, B., Makoudi, S., Mazurek, J. & Staszczak, J. (2016). The storage and the impact for environment of Barycz municipal landfill. Scientific Journals of the Institute of Mineral and Energy Economy of the Polish Academy of Sciences, 92, pp. 195-210.
Klojzy-Karczmarczyk, B. (2018). Report on the implementation of the Environmental Protection Program of the Włoszczowa Poviat for the years 2016-2019 with the perspective until 2023 for the years 2016-2017. Kraków - Włoszczowa.
Kurtyka, M. (2020). Regulation of the Minister of Climate of 2 January 2020 on the waste catalog (Journal of Laws of 2020, item 10). Warszawa: Journal of Laws of the Republic of Poland.
Leboda, R. & Oleszczuk, P. (2002). Municipal waste and its management. Selected issues. Lublin: UMCS.
Li, J., Ding, Y., Wang, K., Ku, N., Qian, G., Xu, Y. & Zhang, J. (2020). Comparison of humic and fulvic acid on remediation of arsenic contaminated soil by electrokinetic technology. Chemosphere, 241, 125038.
Li, X., Li, X., Han, B., Zhao, Y., Li, T., Zhao, P. & Yu, X. (2019). Improvement in lipid production in Monoraphidium sp. QLY-1 by combining fulvic acid treatment and salinity stress. Bioresource Technology, 294, 122179.
Linczar, M. (1985). Properties of soils and directions of their evolution on eroded terrains of the Głubczyce Plateau. Roczniki AR, 27 (4), pp. 107-148.
Liu, L., Ji, M., Wang, F., Tian, Z., Wang, T., Wang, S., Wang, S. & Yan, Z. (2020). Insight into the short-term effect of fulvic acid on nitrogen removal performance and N-acylated-L-homoserine lactones (AHLs) release in the anammox system. Science of The Total Environment, 704, 135285.
Luo, H., Zeng, Y., Cheng, Y., He, D. & Pan, X. (2020). Recent advances in municipal landfill leachate: A review focusing on its characteristics, treatment, and toxicity assessment. Science of The Total Environment, 703, 135468.
Łabaz, B. (2010). Properties of humic acids in phaeozems of the Kłodzko district. Water - Environment - Rural Area, 10 (31), pp. 153-164.
MacCarthy, P. & Rice, J. (1994). Industrial applications of humus. [In] N. Sensei, & T. Miano (Eds) Substances in the Global Environment and Implications on Human Health (pp. 1209-1223). Bari, Italy: Proc. 6th Intern. Meetings of the Intern. Humic Substances Soc., Monopoly.
Mao, Y. (2019). Modulation of the growth performance, meat composition, oxidative status, and immunity of broilers by dietary fulvic acids. Poultry Science, 98 (10), pp. 4509-4513.
Mark, A.N. & Nopawan, R. (2002). Characterization and comparison of hydrophobic neutral and hydrophobic acid dissolved organic carbon isolated from three municipal landfill leachates. Water Research, 36 (6), pp. 1572 - 1584.
MPO. (2010). Operating instructions for the Barycz municipal waste landfill in Krakow. Actualization. Kraków: MPO Kraków.
Negi, P., Mor, S. & Ravindra, K. (2020). Impact of landfill leachate on the groundwater quality in three cities of North India and health risk assessment. Environment, Development and Sustainability, 22 (1), pp. 1455-1474.
PGKiM. (2019). Data received from the administrator. Włoszczowa.
Qi, G., Yue, D. & Nie, Y. (2012). Characterization of humic substances in bio-treated municipal solid waste landfill leachate. Frontiers of Environmental Science & Engineering, 6 (5), pp. 711–716.
Rani, A., Negi, S., Hussain, A. & Kumar, S. (2020). Treatment of urban municipal landfill leachate utilizing garbage enzyme. Bioresource Technology, 297, 122437.
Rosik-Dulewska, C. (2010). Fundamentals of Waste Management. Warsaw: Polish Scientific Publishers PWN.
Rosik-Dulewska, C. (2020). Fundamentals of Waste Management. Warsaw: Polish Scientific Publishers PWN.
Shuiqin, Z., Liang, Y., Wei, L., Zhian, L. Y., Shuwen, H. & Bingqiang, Z. (2017). Characterization of pH-fractionated humic acids derived from Chinese weathered coal. Chemosphere, 166, pp. 334-342.
Siemieniec, A. & Siemieniec, M. (2015). Instructions for managing a municipal waste landfill in Promnik. Kielce: PGO Kielce.
Soujanya Kamble, B., Saxena, P., Kurakalva, R. & Shankar, K. (2020). Evaluation of seasonal and temporal variations of groundwater quality around Jawaharnagar municipal solid waste dumpsite of Hyderabad city, India, 2 (3), pp. 1-22.
Tahiri, A., Richel, A., Destain, J., Druart, P., Thonart, P. & Ongena, M. (2016). Comprehensive comparison of the chemical and structural characterization of landfill leachate and leonardite humic fractions. Analytical and Bioanalytical Chemistry, 408 (7), pp. 1917-1928.
Uyguner, C., Hellriegel, C., Otto, W. & Larive, C. (2004). Characterization of humic substances: Implications for trihalomethane formation. Analytical and Bioanalytical Chemistry, 378, pp. 1579-1586.
Vithanage, M., Wijesekara, H. & Mayakaduwa, S. (2014). Management of Municipal Solid Waste Landfill Leachate: A Global Environmental Issue. In: M. Vithanage, H. Wijesekara, A. Siriwardana, S. Mayakaduwa, & Y. OK, Environmental deterioration and human health: Natural and anthropogenic determinants (pp. 236-287).
Walenczak, K. (2011). Characterization of soils of central and eastern part of Wroclaw. Wrocław: PhD dissertation. University of Life Sciences in Wroclaw.
Wang, H., Wang, Y., Li, X., Sun, Y., Wu, H. & Chen, D. (2016). Removal of humic substances from reverse osmosis (RO) and nanofiltration (NF) concentrated leachate using continuously ozone generation-reaction treatment equipment. Waste Management, 56, pp. 271 - 279.
Wang, Y., Yang, R., Zheng, J., Shen, Z. & Xu, X. (2019). Exogenous foliar application of fulvic acid alleviate cadmium toxicity in lettuce (Lactuca sativa L.). Ecotoxicology and Environmental Safety, 167, pp. 10-19.
Welter, J., Soares, E., Rotta, E. & Seibert, D. (2018). Bioassays and Zahn-Wellens test assessment on landfill leachate treated by photo-Fenton process. Journal of Environmental Chemical Engineering, 6 (1), pp. 1390-1395.
Weng, L., Van Riemsdijk, W., Koopal, L. & Hiemstra, T. (2006). Ligand and Charge Distribution (LCD) model for the description of fulvic acid adsorption to goethite. Journal of Colloid and Interface Science, 302 (2), pp. 442-457.
Xiaol, C., Guixiang, L., Xin, Z., Yongxia, H. & Youcai, Z. (2012). Fluorescence excitation–emission matrix combined with regional integration analysis to characterize the composition and transformation of humic and fulvic acids from landfill at different stabilization stages. Waste Management, 32 (3), pp. 438-447.
Xu, D., Deng, Y., Xi, P., Yu, G., Wang, Q., Zeng, Q., Jiang, Z. & Gao, L. (2019). Fulvic acid-induced disease resistance to Botrytis cinerea in table grapes may be mediated by regulating phenylpropanoid metabolism. Food Chemistry, 286, pp. 226-233.
Yang, S., Zhuo, K., Sun, D., Wang, X. & Wang, J. (2019). Preparation of graphene by exfoliating graphite in aqueous fulvic acid solution and its application in corrosion protection of aluminum. Journal of Colloid and Interface Science, 543, pp. 263-272.
Yi, Q., Mi, Z., Weifeng, D., Cheng, X., Baocai, L. & Qingming, J. (2019). Antidiarrhoeal mechanism study of fulvic acids based on molecular weight fractionation. Fitoterapia, 137, 104270.
Zhang, J., Gong, J., Zenga, G., Ou, X., Jiang, Y., Chang, Y., Guo, M., Zhang, G. & Liu, H. (2016). Simultaneous removal of humic acid/fulvic acid and lead from landfill leachate using magnetic graphene oxide. Applied Surface Science, 370, pp. 335-350.
Zhang, S. W. (2014). Characteristics of Soil Humic Substances as Determined by Conventional and Synchrotron Fourier Transform Infrared Spectroscopy. Journal of Applied Spectroscopy, 81 (5), pp. 843-849.
Go to article

Authors and Affiliations

Tomasz Orliński
1
Anna M. Anielak
1

  1. Department of Environmental Engineering, Institute of Water Supply and Environmental Protection, Cracow University of Technology, Poland
Download PDF Download RIS Download Bibtex

Abstract

The Kalina pond has been well known as a severely degraded area in the Silesia region, Poland. The environmental deterioration results from high contamination of water and bottom sediments with recalcitrant and toxic organic compounds, mainly phenol. The study was aimed at developing a bioremediation-based approach suitable for this type of polluted areas, involving microbiological treatment of water as a key and integral part of other necessary actions: mechanical interventions and the use of physical methods. During the initial biological treatment stage, autochthonous microorganisms were isolated from contaminated samples of water, soil and sediment, then subjected to strong selective pressure by incubation with the pollutants, and finally, cultivated to form a specialised microbial consortium consisting of five extremophilic bacterial strains. Consortium propagation and its biodegradation activity were optimised under variant conditions enabling bacteria to proliferate and to obtain high biomass density at large volumes allowing for the in situ application. After installing aeration systems in the pond, the consortium was surface-sprinkled to launch bioremediation and then both bacterial frequency and the contaminant level was systematically monitored. The complex remediation strategy proved efficient and was implemented on an industrial scale enabling successful remedial of the affected site. Treatment with the specifically targeted and adapted microbial consortium allowed for removal of most organic pollutants within a four-month season of 2022: the chemical oxygen demand (COD) value decreased by 72%, polyaromatic hydrocarbon (PAH) level by 97%, while the content of total phenols and other monoaromatic hydrocarbons (BTEX) dropped below the detection thresholds.
Go to article

Authors and Affiliations

Katarzyna Starzec
1
ORCID: ORCID
Emilia Stańkowska
2
Paulina Supel
1
ORCID: ORCID
Robert Mazur
3
ORCID: ORCID
Piotr Surma
2
Paweł Kaszycki
1
ORCID: ORCID

  1. University of Agriculture in Kraków, Faculty of Biotechnology and Horticulture, Department of Plant Biology and Biotechnology, al. Mickiewicza 21, 31-120 Kraków, Poland
  2. Remea Sp. z o. o., ul. Bonifraterska 17, 00-203 Warszawa, Poland
  3. AGH University of Science and Technology, Faculty of Mining Geodesy and Environmental Engineering, Department of Environmental Protection and Landscaping, al. Mickiewicza 30, 30-059 Kraków, Poland
Download PDF Download RIS Download Bibtex

Abstract

One of the major tasks of municipal waste management in European Union countries is the systematic reduction of waste that is removed and transported to landfills. This refers particularly to biodegradable waste. One of the methods employed to decrease waste amount is Mechanical-Biological Treatment (MBT) of the waste, before it is stored.

The article presents characteristics of MSW and biologically pre-treated municipal solid waste, organic carbon loads emitted in biogas and leachate during waste deposition in a landfill. Its decomposition rate constants were determined on the basis of modified Zacharof and Butler’s stochastic model. The values of decomposition rate constants determined for MSW had similar change trends to those presented in the literature: the hydrolysis constant had the lowest value (2.6 × 10-5 d-1), the highest acid phase constant (4.1 × 10-4 d-1), while the methane phase constant - 2.2 × 10-4 d-1. The PMSW decomposition rate constants in each anaerobic waste degradation phase had similar change trends, though their values were higher, by 21, 11 and 19%, respectively.

Go to article

Authors and Affiliations

Monika Suchowska-Kisielewicz
Sylwia Myszograj
Andrzej Jędrczak
Download PDF Download RIS Download Bibtex

Abstract

Landfilling is the main method of waste disposal in Poland as well as in most countries all over the world. Leachate originating during waste deposition may be a source of ground water pollution. The aim of the paper was to characterize and compare the composition of leachate originating from three landfills in Lublin Province (Poland) and differing in their methods of waste pre-treatment. Ozonation was used in the initial trials to treat landfill leachate. Experiments were carried out to determine whether ozonation using a single dose of 1.8 gO,lm3 has the same effect on the efficiency of organic removal from leachates characterized by different ages and degrees of solid waste pretreatment. From analyses (BOD5, COD, N-NH,, heavy metals) it was concluded, that excluding some fractions (glass, paper, plastics, aluminum, fine organic fraction) from the waste mass affects the leachate quality. The studied oxidizing method was found to influence the BOD5 and COD levels
Go to article

Authors and Affiliations

Magdalena Lebiocka
Agnieszka Montusiewicz
Małgorzata Pawłowska
Janusz Ozonek
Ewa Szkutnik
Marcin Rosłan
Download PDF Download RIS Download Bibtex

Abstract

This paper presents the concentrations of the polycyclic aromatic hydrocarbons (PAH) and heavy metals in leachates from the autothermal thermophilic aerobic digestion (ATAD). The leachates from ATAD installations (Dąbrowa Białostocka, Hajnówka, Pisz, Olecko, Giżycko, Wysokie Mazowieckie) located in Poland were tested. The concentrations of PAHs in samples from Pisz, Giżycko, Wysokie Mazowieckie and Hajnówka were similar to those in industrial wastewater. The cluster analysis confirmed that in sites with a higher polyethylene (p.e.) input from the industrial sector, the leachates were more contaminated with PAH compounds. In samples from Dąbrowa Białostocka, Olecko, Pisz and Hajnówka, the heavy fraction of PAHs compounds prevailed over the light fraction. Concentrations of heavy metals in leachates from ATAD varied. The Ward’s method isolated the wastewater treatment plant in Giżycko. The p.e. from the industrial sector was the highest for this facility. Also, the samples from ATAD had the highest total concentration of heavy metals (5.87 mg/l). The leachates from ATAD are returned to biological systems of municipal sewage treatment plants, where they can be combined into more toxic compounds. Biological wastewater treatment processes do not ensure the removal of PAHs and heavy metals from the wastewater. As a result, harmful compounds can get into the water or ground, polluting the environment.
Go to article

Authors and Affiliations

Dariusz Boruszko
1
ORCID: ORCID
Ada Wojciula
1
ORCID: ORCID

  1. Bialystok University of Technology, Faculty of Civil Engineering and Environmental Sciences,15-351 Białystok, Wiejska 45E, Poland

This page uses 'cookies'. Learn more