Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 4
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

The transformer-less grid connected inverters are gaining more popularity due to their high efficiency, very low ground leakage current and economic feasibility especially in photovoltaic systems. The major issue which surfaces these systems is that of common mode leakage current which arises due to the absence of an electrical transformer connected between the inverter and the utility grid. Several topologies have evolved to reduce the impact of common mode leakage current and a majority of them have succeeded in eliminating the impacts and have well kept them within the limits of grid standards. This paper compares and analyses the impact of the common mode leakage current for four popular inverter configurations through simulation of the topologies such as H5, H6, HERIC and FBZVR inverters.

Go to article

Authors and Affiliations

D. John Sundar
M. Senthil Kumaran
Download PDF Download RIS Download Bibtex

Abstract

High temperature and high electric field applications in tantalum and niobium capacitors are limited by the mechanism of ion migration and field crystallization in a tantalum or niobium pentoxide insulating layer. The study of leakage current (DCL) variation in time as a result of increasing temperature and electric field might provide information about the physical mechanism of degradation. The experiments were performed on tantalum and niobium oxide capacitors at temperatures of about 125°C and applied voltages ranging up to rated voltages of 35 V and 16 V for tantalum and niobium oxide capacitors, respectively. Homogeneous distribution of oxygen vacancies acting as positive ions within the pentoxide layer was assumed before the experiments. DCL vs. time characteristics at a fixed temperature have several phases. At the beginning of ageing the DCL increases exponentially with time. In this period ions in the insulating layer are being moved in the electric field by drift only. Due to that the concentration of ions near the cathode increases producing a positively charged region near the cathode. The electric field near the cathode increases and the potential barrier between the cathode and insulating layer decreases which results in increasing DCL. However, redistribution of positive ions in the insulator layer leads to creation of a ion concentration gradient which results in a gradual increase of the ion diffusion current in the direction opposite to the ion drift current component. The equilibrium between the two for a given temperature and electric field results in saturation of the leakage current value. DCL vs. time characteristics are described by the exponential stretched law. We found that during the initial part of ageing an exponent n = 1 applies. That corresponds to the ion drift motion only. After long-time application of the electric field at a high temperature the DCL vs. time characteristics are described by the exponential stretched law with an exponent n = 0.5. Here, the equilibrium between the ion drift and diffusion is achieved. The process of leakage current degradation is therefore partially reversible. When the external electric field is lowered, or the samples are shortened, the leakage current for a given voltage decreases with time and the DCL vs. time characteristics are described by the exponential stretched law with an exponent n = 0.5, thus the ion redistribution by diffusion becomes dominant.

Go to article

Authors and Affiliations

Martin Kuparowitz
Lubomír Grmela
Vlasta Sedlakova
Download PDF Download RIS Download Bibtex

Abstract

This paper proposes an evaluation method for the observable trap depth range of space charge when using the pulsed electro-acoustic (PEA) method and its complementarity with the current integration charge (Q(t)) method. Based on the measurement process of the PEA method and the hopping conduction principle of space charge, the relationship between the trap depth and the residence time of charge is analysed. A method to analyse the effect of the measurement speed and the spatial resolution of the PEA system on the observable trap depth is then proposed. Further results show when the single measurement time needs 1 s and the resolution is 10 µm at room temperature, the corresponding trap depth is larger than 0.68 eV. Meanwhile, under high temperature or with voltage applied, the depth can further increase. The combined measurement results of the PEA and Q(t) methods indicate that the former focuses on charge distribution in deep traps, which allows to calculate the distorted electric field. The latter can measure the changing process of the total charge involved in all traps, which is applicable to analysing the leakage current. Therefore, the evaluation of HVDC insulation properties based on the joint application of the two methods is more reliable.
Go to article

Bibliography

[1] Zhai, J., Li, W., Zha, J., Cheng, Q., Bian, X., & Dang, Z. (2020). Space charge suppression of polyethylene induced by blending with ethylene-butyl acrylate copolymer. CSEE Journal of Power and Energy Systems, 6(1), 152–159. https://doi.org/10.17775/CSEEJPES.2019.01150
[2] Wang, G., & Kil, G. (Sep. 2017). Measurement and analysis of partial discharge using an ultra-high frequency sensor for gas-insulated structures. Metrology and Measurement Systems, 24(3), 515–524. https://doi.org/10.1515/mms-2017-0045
[3] Ren, H., Takada, T., Uehara, H., Iwata, S., & Li, Q. (Feb. 2021). Research on charge accumulation characteristics by PEA Method and Q(t) method. IEEE Transactions on Instrumentation and Measurement, 70, 6004209. https://doi.org/10.1109/TIM.2021.3055288
[4] Dong, L., Gan, J., Zhang, P., Zhao, Z., Cheng, B., & Han, D. (2018). An improved resonant thermal converter based on micro-bridge resonator. Metrology and Measurement Systems, 25(4), 715–725. https://doi.org/10.24425/mms.2018.124882
[5] Kuparowitz, M., Sedlakova, V., & Grmela, L. (2017). Leakage current degradation due to ion drift and diffusion in tantalum and niobium oxide capacitors. Metrology and Measurement Systems, 24(2), 255–264. https://doi.org/10.1515/mms-2017-0034
[6] Takada, T., Maeno, T., & Kushibe, H. (1987). An electric stress-pulse technique for the measurement of charge in a plastic plate irradiated by an electron beam. IEEE Transactions on Electrical Insulation, EI-22(4), 497–502. https://doi.org/10.1109/TEI.1987.298914
[7] Gao, C., Qi, B., Gao, Y., Zhu, Z., & Li, C. (2019). Kerr electro-optic sensor for electric field in largescale oil-pressboard insulation structure. IEEE Transactions on Instrumentation and Measurement, 68(10), 3626–3634. https://doi.org/10.1109/TIM.2018.2881803
[8] Chen, G., Chong, Y., & Fu, M. (2006). Calibration of the pulsed electroacoustic technique in the presence of trapped charge. Measurement Science and Technology, 17(7), 1974–1980. https://doi.org/ 10.1088/0957-0233/17/7/041
[9] Zhou, Y., Dai, C., & Huang, M. (2016). Space charge characteristics of oil-paper insulation in the electro-thermal aging process. CSEE Journal of Power and Energy Systems, 2(2), 40–46. https://doi.org/10.17775/CSEEJPES.2016.00020
[10] Wu, J., Huang, R., Wan, J., Chen, Y., & Yin, Y. (2016). Phase identification for space charge measurement under periodic stress of an arbitrary waveform based on the Hilbert transform. Measurement Science and Technology, 27(4), 045004. https://doi.org/10.1088/0957-0233/27/4/045004
[11] Ghorbani, H., Abbasi, A., Jeroense, M., Gustafsson, A., & Saltzer, M. (2017). Electrical characterization of extruded DC cable insulation - the challenge of scaling. IEEE Transactions on Dielectrical and Electrical Insulation, 24(3), 1465–1475. https://doi.org/10.1109/TDEI.2017.006124
[12] Mazzanti, G., Chen, G., Fothergill, J. C., Hozumi, N., Li, J., Marzinotto, M., Mauseth, F., Morshuis, P., Reed, C., & Tzimas, A. (2015). A protocol for space charge measurements in full-size HVDC extruded cables. IEEE Transactions on Dielectrical and Electrical Insulation, 22(1), 21–34. https://doi.org/10.1109/TDEI.2014.004557
[13] Escurra, M. G., Mor, R. A., & Vaessen, P. (2020). Influence of the pulsed voltage connection on the electromagnetic distortion in full-size HVDC cable PEA measurements. Sensors, 20(11), 3087. https://doi.org/10.3390/s20113087
[14] Imburgia, A., Romano, P., Chen, G., Rizzo, G., Sanseverino, R. E., Viola, F., & Ala, G. (2019). The industrial applicability of PEA space charge measurements for performance optimization of HVDC power cables. Energies, 12(21), 4186. https://doi.org/10.3390/en12214186
[15] Rizzo, G., Romano, P., Imburgia, A., & Ala, G. (2019). Review of the PEA method for space charge measurements on HVDC cables and mini-cables. Energies, 12(18), 3512. https://doi.org/10.3390/en12183512
[16] Jung, H., Kim, H., Choi, T., Hwangbo, S. (2019). Automatic measurement system of the space charge distribution by a two-step deconvolution. Journal of Electrical Engineering and Technology, 14(5), 2049–2055. https://doi.org/10.1007/s42835-019-00169-y
[17] International Electrotechnical Commission. (2021). Calibration of space charge measuring equipment based on the pulsed electro-acoustic (PEA) measurement principle (Technical Specification No. IEC/TS 62758:2012). https://webstore.iec.ch/publication/7418
[18] Zhu, Y., Li, S., Min, D., Li, S., Cui, H., & Chen, G. (2018). Space charge modulated electrical breakdown of oil impregnated paper insulation subjected to AC-DC combined voltages. Energies, 11, 1547. https://doi.org/10.3390/en11061547
[19] Tian, F.,&Hou, C. (2018).Atrap regulated space charge suppression model for LDPE based nanocomposites by simulation and experiment. IEEE Transactions on Electrical Insulation, 25(6), 2169–2177. https://doi.org/10.1109/TDEI.2018.007282
[20] Li, J., Liang, H., Xiao, M., Du, B.,&Takada, T. (2019). Mechanism of deep trap sites in epoxy/graphene nanocomposite using quantum chemical calculation. IEEE Transactions on Electrical Insulation, 26(5), 1577–1580. https://doi.org/10.1109/TDEI.2019.008178
[21] Li, J., Zhao, R., Du, B., Su, J., Han, C., & Takada, T. (2020). Application progress of quantum chemical calculation in the field of HVDC insulation. High Voltage Engineering, 46(3), 722–781. https://doi.org/10.13336/j.1003-6520.hve.20200331003
[22] Takada, T., Sakai, T., & Toriyama, Y. (1972). Estimation method of charge distribution in polymeric films. IEEJ Transactions on Fundamental Materials, 92(12), 537–544. https://doi.org/10.1541/ ieejfms1972.92.537
[23] Hanazawa, D., Sonoda, K., Miyake, H., Tanaka, Y.,&Takada, T. (2018). Development of measurement system forDCintegrated charge at high temperature. 2018 Condition Monitoring and Diagnosis (2018), Australia. https://doi.org/10.1109/CMD.2018.8535946
[24] Takada, T., Tohmine, T., Tanaka, Y., & Li, J. (2019). Space charge accumulation in double-layer dielectric systems-measurement methods and quantum chemical calculations. IEEE Electrical Insulation Magazine, 35(3), 36–46. https://doi.org/10.1109/MEI.2019.8804333
[25] Sekiguchi, Y., Hosomizu, K., & Yamazaki, T. (2020). Conduction phenomena of AC- and DC-XLPE analyzed by Q(t) method. 2020 International Symposium on Electrical Insulating Materials (ISEIM), Japan, 166–168. https://ieeexplore.ieee.org/document/9275786
[26] Wang, W., Sonoda, K., Yoshida, S., Takada, T., Tanaka, Y., & Kurihara, T. (2018). Current integrated technique for insulation diagnosis of water-tree degraded cable. IEEE Transactions on Dielectrical and Electrical Insulation, 25(1), 94–101. https://doi.org/10.1109/TDEI.2018.006738
[27] Fuji, M., Matsushita, K., Fukuma, M.,&Mitsumoto, S. (2020). Study on characteristics of electrical tree in epoxy resin measured by current integrated charge method. 2020 International Symposium on Electrical Insulating Materials (ISEIM), Japan, 305–308. https://ieeexplore.ieee.org/document/9275799
[28] Fan, L., Tu, Y., Chen, B., Yi, C., Qin, S., Wang, S. (2020). Space charge behavior of polyimide at cryogenic temperatures. IEEE Transactions on Dielectrical and Electrical Insulation, 27(3), 891–899. https://doi.org/10.1109/TDEI.2020.008704
[29] Li, J., Wang, Y., Ran, Z., Yao, H., Du, B., & Takada, T. (2020). Molecular structure modulated trap distribution and carrier migration in fluorinated epoxy resin. Molecules, 25(3), 3071. https://doi.org/10.3390/molecules25133071
Go to article

Authors and Affiliations

Hanwen Ren
1
Tatsuo Takada
2
Yasuhiro Tanaka
2
Qingmin Li
1

  1. North China Electric Power University, State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources, Beijing 102206, China
  2. Tokyo City University, 1-28-1 Tamazutsumi, Setagaya, Tokyo, 158-8557, Japan
Download PDF Download RIS Download Bibtex

Abstract

This work aims to improve the total power dissipation, leakage currents and stability without disturbing the logic state of SRAM cell with concept called sub-threshold operation. Though, sub-threshold SRAM proves to be advantageous but fails with basic 6T SRAM cell during readability and writability. In this paper we have investigated a non-volatile 6T2M (6 Transistors & 2 Memristors) sub-threshold SRAM cell working at lower supply voltage of VDD=0.3V, where Memristor is used to store the information even at power failures and restores previous data with successful read and write operation overcomes the challenge faced. This paper also proposes a new configuration of non-volatile 6T2M (6 Transistors & 2 Memristors) subthreshold SRAM cell resulting in improved behaviour in terms of power, stability and leakage current where read and write power has improved by 40% and 90% respectively when compared to 6T2M (conventional) SRAM cell. The proposed 6T2M SRAM cell offers good stability of RSNM=65mV and WSNM=93mV which is much improved at low voltage when compared to conventional basic 6T SRAM cell, and improved leakage current of 4.92nA is achieved as compared.
Go to article

Authors and Affiliations

Zeba Mustaqueem
1
Abdul Quaiyum Ansari
1
Md Waseem Akram
1

  1. Jamia Milia Islamia Central University, India

This page uses 'cookies'. Learn more