Search results

Filters

  • Journals
  • Date

Search results

Number of results: 2
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

The aim of the study was verification of the response of chamomile (Matricaria recutita (L.) Rauschert), peppermint (Mentha x piperita) lemon balm (Melissa officinalis L.), and sage (Salvia officinalis L.) on the elevated contents of inorganic As species in soils. The ability of herbs to accumulate arsenic was tested in pot experiment in which soils were contaminated by As(III) and As(V). The As(III), As(V), AB (arsenobetaine), MMA (monomethylarsonic acid) and DMA (dimethylarsinic acid) ions were successfully separated in the Hamilton PRP-X100 column with high performance-liquid chromatography-inductively coupled plasma-mass spectrometry (HPLC-ICP-MS) techniques. The study examined total arsenic contents in soil and plants, as well as the mobility of the arsenic species from the soil into the studied plants. Peppermint demonstrated the highest arsenic concentration and phytoaccumulation among studied plants. The sequential chemical extraction showed that arsenic in the contaminated soil was mainly related to the oxide and organic-sulfide fractions. The results showed that the oxidized arsenic form had a greater ability to accumulate in herbs and was more readily absorbed from the substrate by plants. Research has shown that soil contaminated with As(III) or As(V) has different effects on the arsenic content in plants. The plant responses to strong environmental pollution varied and depended on their type and the arsenic species with which the soil was contaminated. In most cases it resulted in the appearance of the organic arsenic derivatives.

Go to article

Authors and Affiliations

Magdalena Jabłońska-Czapla
Rajmund Michalski
Katarzyna Nocoń
Katarzyna Grygoyć
Download PDF Download RIS Download Bibtex

Abstract

Essential oils from four plants , i.e. geranium, rosa, lemon and mint were tested for their activity in vitro and in vivo against Rhizoctonia solani and Fusarium oxysporum f. sp. phaseoli, the cause of root rot and wilt of beans. In vitro, they were found to have an inhibitory effect against the mycelial growth of R. solani and F. oxysporum f. sp. phaseoli. Complete inhibition in fungal growth was observed at a concentration of 4% of each essential oil and Topsin M at 400 ppm as well. In greenhouse the four essential oils were tested as seed coating and/or foliar spray. Results of seed coating at a concentration of 1% clearly demonstrate a good protection of emerged bean seeds against invasion of R. solani and F. oxysporum f. sp. phaseoli compared with the fungicide treatment. A similar trend was observed in a lower extent when the essential oils were applied as bean seeds coating followed by seedlings foliar spray under field conditions. Obvious yield increase as bean green pods, in all treatments, was significantly higher than in the control.

Go to article

Authors and Affiliations

Nehal S. El-Mougy
Nadia G. El-Gamal
Mokhtar M. Abdel-Kader

This page uses 'cookies'. Learn more