Search results

Filters

  • Journals
  • Date

Search results

Number of results: 4
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

Cardiovascular system diseases are the major causes of mortality in the world. The most important and widely used tool for assessing the heart state is echocardiography (also abbreviated as ECHO). ECHO images are used e.g. for location of any damage of heart tissues, in calculation of cardiac tissue displacement at any arbitrary point and to derive useful heart parameters like size and shape, cardiac output, ejection fraction, pumping capacity. In this paper, a robust algorithm for heart shape estimation (segmentation) in ECHO images is proposed. It is based on the recently introduced variant of the level set method called level set without edges. This variant takes advantage of the intensity value of area information instead of module of gradient which is typically used. Such approach guarantees stability and correctness of algorithm working on the border between object and background with small absolute value of image gradient. To reassure meaningful results, the image segmentation is proceeded with automatic Region of Interest (ROI) calculation. The main idea of ROI calculations is to receive a triangle-like part of the acquired ECHO image, using linear Hough transform, thresholding and simple mathematics. Additionally, in order to improve the images quality, an anisotropic diffusion filter, before ROI calculation, was used. The proposed method has been tested on real echocardiographic image sequences. Derived results confirm the effectiveness of the presented method.

Go to article

Authors and Affiliations

Andrzej Skalski
Paweł Turcza
Download PDF Download RIS Download Bibtex

Abstract

With development of medical diagnostic and imaging techniques the sparing surgeries are facilitated. Renal cancer is one of examples. In order to minimize the amount of healthy kidney removed during the treatment procedure, it is essential to design a system that provides three-dimensional visualization prior to the surgery. The information about location of crucial structures (e.g. kidney, renal ureter and arteries) and their mutual spatial arrangement should be delivered to the operator. The introduction of such a system meets both the requirements and expectations of oncological surgeons. In this paper, we present one of the most important steps towards building such a system: a new approach to kidney segmentation from Computed Tomography data. The segmentation is based on the Active Contour Method using the Level Set (LS) framework. During the segmentation process the energy functional describing an image is the subject to minimize. The functional proposed in this paper consists of four terms. In contrast to the original approach containing solely the region and boundary terms, the ellipsoidal shape constraint was also introduced. This additional limitation imposed on evolution of the function prevents from leakage to undesired regions. The proposed methodology was tested on 10 Computed Tomography scans from patients diagnosed with renal cancer. The database contained the results of studies performed in several medical centers and on different devices. The average effectiveness of the proposed solution regarding the Dice Coefficient and average Hausdorff distance was equal to 0.862 and 2.37 mm, respectively. Both the qualitative and quantitative evaluations confirm effectiveness of the proposed solution.

Go to article

Authors and Affiliations

Andrzej Skalski
Katarzyna Heryan
Jacek Jakubowski
Tomasz Drewniak
Download PDF Download RIS Download Bibtex

Abstract

This paper presents a new, nondestructive method of testing brick wall dampness in wall structures. The setup was used to determine the moisture in a specially built laboratory model. Topological methods and the gradient technique are used to optimize the approach. A forward model of a wall was constructed to solve the inverse problem resulting in moisture buildup inside the wall.

Go to article

Authors and Affiliations

Tomasz Rymarczyk
Jan Sikora
Przemysław Adamkiewicz
Karol Duda
Jakub Szumowski
Download PDF Download RIS Download Bibtex

Abstract

This paper presents an extended finite element method applied to solve phase change problems taking into account natural convection in the liquid phase. It is assumed that the transition from one state to another, e.g., during the solidification of pure metals, is discontinuous and that the physical properties of the phases vary across the interface. According to the classical Stefan condition, the location, topology and rate of the interface changes are determined by the jump in the heat flux. The incompressible Navier-Stokes equations with the Boussinesq approximation of the natural convection flow are solved for the liquid phase. The no-slip condition for velocity and the melting/freezing condition for temperature are imposed on the interface using penalty method. The fractional four-step method is employed for analysing conjugate heat transfer and unsteady viscous flow. The phase interface is tracked by the level set method defined on the same finite element mesh. A new combination of extended basis functions is proposed to approximate the discontinuity in the derivative of the temperature, velocity and the pressure fields. The single-mesh approach is demonstrated using three two-dimensional benchmark problems. The results are compared with the numerical and experimental data obtained by other authors.

Go to article

Bibliography

[1] A. Faghri and Y. Zhang. Transport Phenomena in Multiphase Systems. Elsevier, 2006.
[2] S.C. Gupta. The Classical Stefan Problem: Basic Concepts, Modelling and Analysis. Elsevier, 2003.
[3] V. Alexiades and S.D. Solomon. Mathematical Modeling of Melting and Freezing Processes. Hemisphere Publ. Co, Washington DC, 1993.
[4] O.C. Zienkiewicz, R.L. Taylor, and P. Nithiarasu. The Finite Element Method for Fluid Dynamics, 6th edition. Elsevier Butterworth-Heinemann, Burlington, 2005.
[5] K. Morgan. A numerical analysis of freezing and melting with convection. Computer Methods in Applied Mechanics and Engineering, 28(3):275–284, 1981. doi: 10.1016/0045-7825(81)90002-5.
[6] J. Mackerle. Finite elements and boundary elements applied in phase change, solidification and melting problems. A bibliography (1996–1998). Finite Elements in Analysis and Design, 32(3):203–211, 1999. doi: 10.1016/S0168-874X(99)00007-4.
[7] S. Wang, A. Faghri, and T.L. Bergman. A comprehensive numerical model for melting with natural convection. International Journal of Heat and Mass Transfer, 53(9-10):1986–2000, 2010. doi: 10.1016/j.ijheatmasstransfer.2009.12.057.
[8] G. Vidalain, L. Gosselin, and M. Lacroix. An enhanced thermal conduction model for the prediction of convection dominated solid–liquid phase change. International Journal of Heat and Mass Transfer, 52(7-8):1753–1760, 2009. doi: 10.1016/j.ijheatmasstransfer.2008.09.020.
[9] I. Danaila, R. Moglan, F. Hecht, and S. Le Masson. A Newton method with adaptive finite elements for solving phase-change problems with natural convection. Journal of Computational Physics, 274:826–840, 2014. doi: 10.1016/j.jcp.2014.06.036.
[10] J.M. Melenk and I. Babuska. The partition of unity finite element method: basic theory and application. Computer Methods in Applied Mechanics and Engineering. 139(1-4):289–314, 1996. doi: 10.1016/S0045-7825(96)01087-0.
[11] A. Cosimo, V. Fachinotti, and A. Cardona. An enrichment scheme for solidification problems. Computational Mechanics, 52(1):17–35, 2013. doi: 10.1007/s00466-012-0792-9.
[12] T. Belytschko and T. Black. Elastic crack growth in finite elements with minimal remeshing. International Journal for Numerical Methods in Engineering, 45(5):601–620, 1999. doi: 10.1002/(SICI)1097-0207(19990620)45:5601::AID-NME598>3.0.CO;2-S.
[13] R. Merle and J. Dolbow. Solving thermal and phase change problems with the eXtended finite element method. Computational Mechanics, 28(5):339–350, 2002. doi: 10.1007/s00466-002-0298-y.
[14] J. Chessa, P. Smolinski, and T. Belytschko. The extended finite element method (XFEM) for solidification problems. International Journal for Numerical Methods in Engineering, 53(8):1959–1977, 2002. doi: 10.1002/nme.386.
[15] P. Stapór. The XFEM for nonlinear thermal and phase change problems. International Journal of Numerical Methods for Heat & Fluid Flow, 25(2):400–421, 2015. doi: 10.1108/HFF-02-2014-0052.
[16] N. Zabaras, B. Ganapathysubramanian, and L. Tan. Modelling dendritic solidification with melt convection using the extended finite element method. Journal of Computational Physics, 218(1):200–227, 2006. doi: 10.1016/j.jcp.2006.02.002.
[17] P. Stapór. A two-dimensional simulation of solidification processes in materials with thermodependent properties using XFEM. International Journal of Numerical Methods for Heat & Fluid Flow, 26(6):1661–1683, 2016. doi: 10.1108/HFF-01-2015-0018.
[18] J. Chessa and T. Belytschko. An enriched finite element method and level sets for axisymmetric two-phase flow with surface tension. International Journal for Numerical Methods in Engineering, 58(13):2041–2064, 2003. doi: 10.1002/nme.946.
[19] J. Chessa and T. Belytschko. An extended finite element method for two-phase fluids. Journal of Applied Mechanics, 70(11):10–17, 2003. doi: 10.1115/1.1526599.
[20] M. Li, H. Chaouki, J. Robert, D. Ziegler, D. Martin, and M. Fafard. Numerical simulation of Stefan problem with ensuing melt flow through XFEM/level set method. Finite Elements in Analysis and Design, 148:13–26, 2018. doi: 10.1016/j.finel.2018.05.008.
[21] D. Martin, H. Chaouki, J. Robert, D. Ziegler, and M. Fafard. A XFEM phase change model with convection. Frontiers in Heat and Mass Transfer, 10:1-11, 2018. doi: 10.5098/hmt.10.18.
[22] S. Osher and J.A. Sethian. Fronts propagating with curvature dependent speed: Algorithms based on Hamilton–Jacobi formulations. Journal of Computational Physics, 79(1):12–49, 1988. doi: 10.1016/0021-9991(88)90002-2.
[23] M. Stolarska, D.L. Chopp, N. Möes, and T. Belytschko. Modelling crack growth by level sets in the extended finite element method. International Journal for Numerical Methods in Engineering, 51(8):943–960, 2001. doi: 10.1002/nme.201.
[24] M. Sussman, P. Smereka, and S. Osher. A level set approach for computing solutions to incompressible two-phase flow. Journal of Computational Physics, 114(1):146–159, 1994. doi: 10.1006/jcph.1994.1155.
[25] M.Y. Wang, X. Wang, and D. Guo. A level set method for structural topology optimization. Computer Methods in Applied Mechanics and Engineering, 192(1-2):227–246, 2003. doi: 10.1016/S0045-7825(02)00559-5.
[26] N. Peters. Turbulent Combustion. Cambridge University Press, Cambridge, 2000.
[27] Y.H. Tsai and S. Osher. Total variation and level set methods in image science. Acta Numerica, 14:509–573, 2005. doi: 10.1017/S0962492904000273.
[28] V. Alexiades and J.B. Drake. A weak formulation for phase-change problems with bulk movement due to unequal densities. In J.M. Chadam and H. Rasmussen editors, Free Boundary Problems Involving Solids, pages 82–87, CRC Press, 1993.
[29] S. Chen, B. Merriman, S. Osher, and P. Smereka. A simple level set method for solving Stefan problems. Journal of Computational Physics, 135(1):8–29, 1997. doi: 10.1006/jcph.1997.5721.
[30] H. Sauerland. An XFEM Based Sharp Interface Approach for Two-Phase and free-Surface Flows. Ph.D. Thesis, RWTH Aachen University, Aachen, Germany, 2013.
[31] J.E. Tarancòn, A.Vercher, E. Giner, and F.J. Fuenmayor. Enhanced blending elements forXFEM applied to linear elastic fracture mechanics. I nternational Journal for Numerical Methods in Engineering, 77(1):126–148, 2009. doi: 10.1002/nme.2402.
[32] T.P. Fries. A corrected XFEM approximation without problems in blending elements. International Journal for Numerical Methods in Engineering, 75(5):503–532, 2008. doi: 10.1002/nme.2259.
[33] N. Moës, M. Cloirec, P. Cartraud, and J.F. Remacle. A computational approach to handle complex microstructure geometries. Computer Methods in Applied Mechanics and Engineering, 192(28-30):3163–3177, 2003. doi: 10.1016/S0045-7825(03)00346-3.
[34] G. Zi and T. Belytschko. New crack-tip elements for XFEM and applications to cohesive cracks. International Journal for Numerical Methods in Engineering, 57(15):2221–2240, 2003. doi: 10.1002/nme.849.
[35] G. Ventura, E. Budyn, and T. Belytschko. Vector level sets for description of propagating cracks in finite elements. International Journal for Numerical Methods in Engineering, 58(10):1571–1592, 2003. doi: 10.1002/nme.829.
[36] P. Stąpór. An improved XFEM for the Poisson equation with discontinuous coefficients. Archive of Mechanical Engineering, 64(1):123–144, 2017. doi: 10.1515/meceng-2017-0008.
[37] H.G. Choi, H. Choi, and J.Y. Yoo. A fractional four-step finite element formulation of the unsteady incompressible Navier-Stokes equations using SUPG and linear equal-order element methods. Computer Methods in Applied Mechanics and Engineering, 143(3-4):333–348, 1997. doi: 10.1016/S0045-7825(96)01156-5.
[38] R. Codina. Pressure stability in fractional step finite element methods for incompressible flows. Journal of Computational Physics, 170(1):112–140, 2001. doi: 10.1006/jcph.2001.6725.
[39] Z. Chen. Finite Element Methods and Their Applications. Springer, 2005.
[40] T. Belytschko,W.K. Liu, and B. Moran. Nonlinear Finite Elements for Continua and Structures. Wiley, 2000.
[41] T.A. Kowalewski and M. Rebow. Freezing of water in differentially heated cubic cavity. International Journal of Computational Fluid Dynamics, 11(3-4):193–210, 1999. doi: 10.1080/10618569908940874.
[42] T. Michałek and T.A. Kowalewski. Simulations of the water freezing process – numerical benchmarks. Task Quarterly, 7(3):389–408, 2003.
[43] M. Giangi, T.A.Kowalewski, F. Stella, and E. Leonardi.Natural convection during ice formation: numerical simulation vs. experimental results. Computer Assisted Mechanics and Engineering Sciences, 7(3):321–342, 2000.
[44] P. Stąpór. An enhanced XFEM for the discontinuous Poisson problem. Archive of Mechanical Engineering, 66(1):25–37, 2019. doi: 10.24425/ame.2019.126369.
[45] Thermal-FluidCentral. Thermophysical Properties: Phase Change Materials, 2010 (last accessed January 14, 2016). https://thermalfluidscentral.org.
[46] M. Okada. Analysis of heat transfer during melting from a vertical wall. I nternational Journal of Heat and Mass Transfer, 27(11):2057–2066, 1984. doi: 10.1016/0017-9310(84)90192-3.
[47] Z. Ma and Y. Zhang. Solid velocity correction schemes for a temperature transforming model for convection phase change. International Journal of Numerical Methods for Heat & Fluid Flow, 16(2):204–225, 2006. doi: 10.1108/09615530610644271.
Go to article

Authors and Affiliations

Paweł Stąpór
1

  1. Faculty of Management and Computer Modelling, Kielce University of Technology, Kielce, Poland.

This page uses 'cookies'. Learn more