Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 22
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

The use of environmentally friendly bio-pesticides is crucial for higher root and sugar yield in sugar beets. The economic importance of beet moth [ Scrobipalpa ocellatella Boyd. (Lep.: Gelechidae)] losses in the field and storage highlight the need for evaluation of appropriate, environmentally friendly methods for pest control. The aims of the present study were to i) assess azadirachin (AZN) effects on the life cycle and activity of the pest, and ii) manage the beet moth on roots under laboratory conditions. For the experiments, the main concentrations were prepared on the basis of the field-recommended dose of this pesticide (1–1.5 l/1000 l water). The LC50 was estimated for 3rd instar larvae. Later, at sublethal concentrations, the relative time for the emergence of each developmental stage was determined. The mean female fecundity was 37% (±4) for treated tests at the lowest AZN concentration (0.5 ml · l–1). AZN at 0.5 ml · l–1 concentration resulted in 62 (±4) deposited eggs per plant for the treated roots and 326 (±1) for roots in the control test. Mortality increased in response to increased AZN concentrations. The results revealed that after 72 h, the highest AZN concentration (2.5 ml · l–1) caused 100% repellency and 82% (±1.38) mortality on 3rd instar larvae. According to our findings, a concentration of 2 ml · l–1 AZN (20 gr active ingredient per 1 hectare) after 4 days affected 1st instar larvae and the larvae with no further development had 92.2% (±1.2) mortality. In conclusion, the results revealed that AZN as a biorational pesticide can significantly minimize the losses of S. ocellatella on sugar beet crops.
Go to article

Bibliography


Abdollahian-Noghabi M., Sharifi H., Babaei B., Bahmani G.A. 2014. Introduction of a new formula for determination of autumn sugar beet purchase price. Journal of Sugar Beet 29: 115–121. DOI: https://doi.org/10.1515/cerce-2015-0013.
Abedi Z., Saber M., Vojoudi S., Mahdavi V., Parsaeyan E. 2014. Acute, sublethal, and combination effects of azadirachtin and Bacillus thuringiensis on the cotton bollworm, Helicoverpa armigera. Journal of Insect Science 14 (1): 30. DOI: https://doi.org/10.1093/jis/14.1.30
Adel M.M., Sehnal F., Ibrahim S.S., Yosef Salem N. 2019. Suneem oil inhibits physiological activity of Spodoptera Littoralis (Boisd.) (Lepidoptera: Noctuidae). EurAsian Journal of BioSciences 13 (2): 1311–1316.
Al-Keridis L.A. 2016. Biology, ecology and control studies on sugar-beet mining moth, Scrobipalpa ocellatella. Der Pharma Chemica 8 (20): 166–171.
Al-Rahimy S.K., Al-Sultany A.K., Murshidy Z.R., Al-Essa R.A., Kadhim Abdul A.R. 2019. Effect of crude extracts of the peels of Musa acuminate L. banana plant in some biological aspects of Culex molestus Forskal (Diptera: Culicidae) with an estimation of the enzymatic effectiveness of Tyrosinase. EurAsian Journal of BioSciences 13 (1): 1–13.
Alouani A., Rehimi N., Soltani N. 2009. Larvicidal activity of a neem tree extract (azadirachtin) against mosquito larvae in the Republic of Algeria. Jordan Journal of Biological Sciences 2 (1): 15–22.
Amin A.H., Helmi A., El-Serwy S.A. 2008. Ecological studies on sugar beet insects at Kafr El-Sheikh Governorate, Egypt. Egyptian Journal of Agricultural Research 86 (6): 2129–2139.
Amoabeng B.W., Johnson A.C., Gurr G.M. 2019. Natural enemy enhancement and botanical insecticide source: a review of dual use companion plants. Applied Entomology and Zoology 54: 1–19. DOI: https://doi.org/10.1007/s13355-018-00602-0
Anonymous. 2020. Final Research Performance Report of Sugar Beet Seed Institute (SBSI) for 2018 Cropping Season. Agricultural Research, Education and Extension Organization (AREEO). Ministry of Jihad-e-Agriculture, Karaj, Iran, 121 pp. (in Persian)
Ascher K.R.S. 1993. Nonconventional insecticidal effects of pesticides available from the neem tree, Azadirachta indica. Archives of Insect Biochemistry and Physiology 22: 433–449. DOI: https://doi.org/10.1002/arch.940220311
Bazazo K.G.I., Mashaal R.E.F. 2014. Pests attacking post-harvest sugar beet roots, and their adverse effects on sugar content. Journal of Plant Protection and Pathology 5: 673–678. DOI: https://doi.org/10.21608/jppp.2014.87978
Bazok R., Drmic Z., Cacija M., Mrganic M., Viric Gasparic H., Lemic D.A. 2018. Moths of Economic Importance in the Maize and Sugar Beet Production. Intech Publications. Chapter 4, 21 pp. DOI: http://dx.doi.org/10.5772/intechopen.78658
Bazok R. 2010. Suzbijanje štetnika u proizvodnji šećerne repe. Glasilo Biljne Zaštite 10 (3): 153–165.
Betz A., Andrew N.R. 2020. Influence of non-lethal doses of natural insecticides spinetoram and azadirachtin on Helicoverpa punctigera (native budworm, Lepidoptera: Noctuidae) under laboratory conditions. Frontiers in Physiology 11: 1089. DOI: https://doi.org/10.3389/fphys.2020.01089
Bezzar-Bendjazia R., Kilani-Morakchi S., Maroua F., Aribi N. 2017. Azadirachtin induced larval avoidance and antifeeding by disruption of food intake and digestive enzymes in Drosophila melanogaster (Diptera: Drosophilidae). Pesticide Biochemistry and Physiology 143: 135–140. DOI: https://doi.org/10.1016/j.pestbp.2017.08.006
Bezzar-Bendjazia R., Kilani-Morakchi S., Aribi N. 2016. Larval exposure to azadirachtin affects fitness and oviposition site preference of Drosophila melanogaster. Pesticide Biochemistry and Physiology 133: 85–90. DOI: https://doi.org/10.1016/j.pestbp.2016.02.009
Bruce Y.A., Gounou S., Chabi-Olaye A., Smith H., Schulthess F. 2004. The effect of neem (Azadirachtaindica indica A. Juss) oil on oviposition, development and reproductive potentials of Sesamia calamistis (Lepidoptera: Noctuidae) and Eldana saccharina Walker (Lepidoptera: Pyralidae). Agricultural and Forest Entomology 6: 223–232. DOI: https://doi.org/10.1111/j.1461-9555.2004.00218.x
Brunherotto R., Vendramim J.D., M.A.G. de. Oriani. 2010. Effects of tomato genotypes and aqueous extracts of Melia azedarach leaves and Azadirachta indica seeds on Tuta absoluta (Meyrick) (Lepidoptera: Gelechiidae). Neotropical Entomology 39: 784–791. DOI: https://doi.org/10.1590/S1519-566X2010000500018
Boadu K.O., Kofi Tulashie S., Akrofi Anang M., Desire Kpan J. 2011. Production of natural insecticide from neem leaves (Azadirachta indica). Asian Journal of Plant Science and Research 1 (4): 33–38.
Butterworth J.H., Morgan E.D. 1968. Isolation of a substance that suppresses feeding in locusts. Chemical Communications 1: 23–24. DOI: https://doi.org/10.1039/C19680000023
Darabian K., Yarahmadi F. 2017. Field efficacy of azadirachtin, chlorfenapyr, and Bacillus thuringiensis against Spodoptera exigua (Lepidoptera: Noctuidae) on sugar beet crop. Journal of the Entomological Research Society 19 (3): 45–52.
Dhar R., Dawar H., Garg S., Basir S.E., Talwar G.P..1996. Effect of volatiles from neem and other natural products on gonotrophic cycle and oviposition of Anopheles stephensi and An. culicifacies (Diptera: Culicidae). Journal of Medical Entomology 33 (2): 195–201. DOI: https://doi.org/10.1093/jmedent/33.2.195
Dorn A., Rademacher J.M., Sehn E. 1987. Effects of azadirachtin on reproductive organs and fertility in the large milkweed bug, Oncopeltus fasciatus. Proc. 3rd Int. Neem Conf. Nairobi, 1986, Eschborn: GTZ. 13 (3): 273–288. DOI: https://doi.org/10.1016/0022-1910(86)90063-6
Dreistadt S.H. 2004. Pests of Landscape Trees and Shrubs: An Integrated Pest Management Guide. UCANR Publications, CA, USA.
Er A., Taşkıran D., Sak O. 2017. Azadirachtin-induced effects on various life history traits and cellular immune reactions of Galleria mellonella (Lepidoptera: Pyralidae). Archives of Biological Sciences 69 (2): 335–344. DOI: https://doi.org/10.2298/ABS160421108E
Fajt E. 1951. Repin moljac (Phthorimaea ocelatela). Biljna Proizvodnja 4 (1): 136–141.
Feder D., Valle D., Rembold H., Garcia E.S..1988. Azadirachtin induced sterilization in mature females of Rhodniuspro lixus. Zeitschriftfür Naturforschung C 43: 908–913. DOI: https://doi.org/10.1515/znc-1988-11-1218
Finney D.J. 1971. Probit Analysis. 3rd Edition, Cambridge University Press, Cambridge, UK, 333 pp.
Fong D.K.H., Kim S., Chen Z., DeSarbo W.S..2016. A Bayesian multinomial probit model for the analysis of panel choice data. Psychometrika 81 (1): 161–83. DOI: https://doi.org/10.1007/s11336-014-9437-6
Fugate K.K., Campbell L.G. 2009. Postharvest deterioration of sugar beet. p. 92–94. In: “Compendium of Beet Diseases and Pests” (R.M. Harveson, L.E. Hanson, G.L. Hein, eds.). Part III. 2nd edition. St. Paul, MN: The American Phytopathological Society Publication, USA.
Ganji Z., Moharramipour S. 2017. Cold hardiness strategy in field collected larvae of Scrobipalpa ocellatella (Lepidoptera: Gelechiidae). Journal of Entomological Society of Iran 36 (4): 287–296.
Garcia J.F., Grisoto E., Vendramim J.D., Botelho P.S.M. 2006. Bioactivity of neem, Azadirachta indica, against spittlebug Mahanarva fimbriolata (Hemiptera: Cercopidae) on sugarcane. Journal of Economic Entomology 99: 2010–2014. DOI: https://doi.org/10.1093/jee/99.6.2010
Gnanamani R., Dhanasekaran S. 2013. Growth inhibitory effects of azadirachtin against Pericallia ricini (Lepidoptera: Arctiidae). World Journal of Zoology 8 (2): 185–191.
Godinho H.P. 2007. Reproductive strategies of fishes applied to aquaculture: bases for development of production technologies. Revista Brasileira de Reprodução Animal 31 (3): 351–360.
Hasan F., Ansari M.S..2011. Toxic effects of neem-based insecticides on Pieris brassicae (Linn.). Crop Protection 30 (4): 502–507. DOI: https://doi.org/10.1016/j.cropro.2010.11.029
Heibatian A., Yarahmadi F., Lotfi Jalal Abadi A. 2018. Field efficacy of biorational insecticides, azadirachtin and Bt, on Agrotis segetum (Lepidoptera: Noctuidae) and its carabid predators in the sugar beet fields. Journal of Crop Protection 7 (4): 365–373.
Ikeura H., Sakura A., Tamaki M. 2013. Repellent effect of neem against the cabbage armyworm on leaf vegetables. Journal of Agriculture and Sustainability 4 (1): 1–15.
Irigaray F.J., Moreno-Grijalba F., Marco V., Perez-Moreno I. 2010. Acute and reproductive effects of Align®, an insecticide containing azadirachtin, on the grape berry moth, Lobesia botrana. Journal of Insect Science 10: 1–33. DOI: https://doi.org/10.1673/031.010.3301
Ismadji S., Kurniawan A., Ju Y.H., Soetaredjo F.E., Ayucitra A., Ong L.K. 2012. Solubility of Azadirachtin and several triterpenoid compounds extracted from neem seed kernel in supercritical CO2. Fluid Phase Equilibria 336: 9–15. DOI: https://doi.org/10.1016/j.fluid.2012.08.026
Jagannadh V., Nair V. 1992. Azadirachtin-induced effects on larval-pupal transformation of Spodoptera mauritia. Physiological Entomology 17: 56–61. DOI: https://doi.org/10.1111/j.1365-3032.1992.tb00989.x
Kheiri M. 1991. Important Pests of Sugar Beet and Their Control. Ministry of Agriculture, Agricultural Research and Education organization. Kalameh Publication Institute, Tehran. Iran, 126 pp. (in Persian)
Kheiri M., Naiim A., Fazeli M., Djavan-Moghaddam H., Eghtedar E. 1980. Some studies on Scrobipalpa ocellatella Boyd in Iran. Applied Entomology and Phytopathology 48: 1–39. (in Persian)
Liang G.M., Chen W., Liu T.X. 2003. Effects of three neem-based insecticides on diamond back moth (Lepidoptera: Plutellidae). Crop Protection 22: 333–340. DOI: https://doi.org/10.1016/S0261-2194(02)00175-8
Liu T.X., Liu S.S. 2006. Experience‐altered oviposition responses to a neem‐based product, Neemix®, by the diamondback moth, Plutella xylostella. Pest Management Science 62: 38–45. DOI: https://doi.org/10.1002/ps.1123
Lopez O., Fernández-Bolaños J.G., Gil M.V. 2005. New trends in pest control: The search for greener insecticides. Green Chemistry 7 (6): 431–442. DOI: https://doi.org/10.1039/b500733j
Lucantoni L., Giusti F., Cristofaro M., Pasqualini L., Esposito F., Lupetti P. 2006. Effects of a neem extract on blood feeding, oviposition and oocyte ultrastructure in Anopheles stephensi Liston (Diptera: Culicidae). Tissue and Cell 38: 361–371. DOI: https://doi.org/10.1016/j.tice.2006.08.005
Ma D.L., Gordh G., Zalucki M.P. 2000. Biological effects of azadirachtin on Helicoverpa armigera (Hübner) (Lepidoptera: Noctuidae) fed on cotton and artificial diet. Australian Journal of Entomology 39 (4): 301–304. DOI: https://doi.org/10.1046/j.1440-6055.2000.00180.x
Manna B., Maiti S., Dasa A. 2020. Bioindicator potential of Spathosternum prasiniferum (Orthoptera; Acridoidea) in pesticide (azadirachtin)-induced radical toxicity in gonadal/nymphal tissues; correlation with eco-sustainability. Journal of Asia-Pacific Entomology 23: 350–357. DOI: https://doi.org/10.1016/j.aspen.2020.02.007
Martinez S.S., van Emden H.F. 2001. Growth disruption, abnormalities and mortality of Spodoptera littoralis caused by azadirachtin. Neotropical Entomology 30: 113–125. DOI: http://dx.doi.org/10.1590/S1519-566X2001000100017
Mochiah M.B., Banful B., Fening K.N., Amoabeng B.W., Ekyem S., Braimah H., Owusu-Akyaw M. 2011. Botanicals for the management of insect pests in organic vegetable production. Journal of Entomology and Nematology 3 (6): 85–97.
Mordue A.J. 2004. Present concepts of the mode of action of azadirachtin from Neem. p. 229–242. In: “Neem: Today and in the New Millennium” (O. Koul, S. Wahab, eds.). Chapter 11. Kluwer Academic Publishers. DOI: https://doi.org/10.1007/1-4020-2596-3_11
Mordue A.J., Blackwell A. 1993. Azadirachtin: an update. Journal of Insect Physiology 39: 903–924. DOI: https://doi.org/10.1016/0022-1910(93)90001-8
Mordue A.J., Morgan E.D., Nisbet A.J. 2005. Azadirachtin, a natural product in insect control. p. 185–201. In: “Comprehensive Molecular Insect Science” (L.I. Gilbert, ed.). Elsevier, Amsterdam.
Morgan E.D. 2009. Azadirachtin, a scientific gold mine. Journal of Bioorganic and Medicinal Chemistry 17 (12): 4096–4105. DOI: https://doi.org/10.1016/j.bmc.2008.11.081
Naumann K., Isman M.B. 1995. Evaluation of neem Azadirachtaindica seed extracts and oils as oviposition deterrents to noctuid moths. Entomologia Experimentalis et Applicata 76: 115–120. DOI: https://doi.org/10.1111/j.1570-7458.1995.tb01953.x
Orak S., Zandi-Sohani N., Yarahmadi F. 2019. Some alternatives to the chemical control of Spodoptera exigua (Hubner, 1808) in black-eyed pea. International Journal of Tropical Insect Science 39: 319–323. DOI: https://doi.org/10.1007/s42690-019-00043-4
Osborne J.W. 2010. Improving your data transformations: applying the Box-Cox transformation. Practical Assessment, Research and Evaluation 15: 1–9. DOI: https://doi.org/10.7275/qbpc-gk17
Pineda S. Martinez A.M., Figueroa J.I., Schneider M.I., Estal P.D., Vinuela E., Gomez B., Smagghe G., Budia F. 2009. Influence of azadirachtin and methoxyfenozide on life parameters of Spodoptera littoralis (Lepidoptera: Noctuidae). Journal of Economic Entomology 102: 1490–1496. DOI: https://doi.org/10.1603/029.102.0413
Qiao J., Zou X., Lai D., Yan Y., Wang Q., Li W., Gu H. 2014. Azadirachtin blocks the calcium channel and modulates the cholinergic miniature synaptic current in the central nervous system of Drosophila. Pest Management Science 70: 1041–1047. DOI: https://doi.org/10.1002/ps.3644
Qin D., Zhang P., Zhou Y., Liu B., X Jao C., Chen W., Zhang Zh. 2019. Antifeeding effects of azadirachtin on the fifth instar Spodoptera litura larvae and the analysis of azadirachtin on target sensilla around mouthparts. Archives of Insect Biochemistry and Physiology 103 (4): 1–12. DOI: https://doi.org/10.1002/arch.21646
Radhika S., Sahayaraj K., Senthil‐Nathan S., Hunter W.B. 2018. Individual and synergist activities of monocrotophos with neem based pesticide, Vijayneem against Spodoptera litura Fab. Physiological and Molecular Plant Pathology 101: 54–68. DOI: https://doi.org/10.1016/j.pmpp.2017.05.004
Raman G.V., Rao M.S., Srimannaryana G. 2000. Efficacy of botanical formulations from Annona squamosa Linn. and Azadirachta indica A. Juss against semilooper Achaea janata Linn. infesting castor in the field. Journal of Entomological Research. 24(3): 235–238.
Rashidov M.A., Khasanov A. 2003. Pests of sugar beet in Uzbekistan. Zashchita Rastenii 3: 29.
Razini A., Pakyari H., Arbab A. 2017. Estimation of sugar beet lines and cultivars infection to Scrobipalpa ocellatellaboyd. (Lepidoptera: Gelechiidae) larvae under field condition with natural infection. Journal of Sugar Beet 32 (2): 147–155.
Razini A., Pakyari H., Arbab A., Ardeh M.J., Ardestani H. 2016. Study of infestation amount to beet moth “Scrobipalpa ocellatella”, among different sugar beet genotypes in the field. Proceedings of 22nd Iranian Plant Protection Congress, 23-27 August, Karaj, Iran.
Sami A.J., Bilal S., Khalid M.,. Shakoori F.R, Rehman F., Shakoori A.R. 2016. Effect of crude neem (Azadirachta indica) powder and azadirachtin on the growth and Acetylcholinesterase activity of Tribolium castaneum (Herbst) (Coleoptera: Tenebrionidae). Pakistan Journal of Zoology 48 (3): 881–886.
Schluter U., Bidmon H.J., Grewe S. 1985. Azadirachtin affects growth and endocrine events in larvae of the tobacco hornworm Manduca sexta. Journal of Insect Physiology 31: 773–777. DOI: https://doi.org/10.1016/0022-1910(85)90070-8
Schmutterer H. 1990. Properties and potential of natural pesticides from the neem tree, Azadirachta indica. Annual Review of Entomology 35: 271–297. DOI: https://doi.org/10.1146/annurev.en.35.010190.001415
Schreck C.E. 1977. Techniques for evaluation of insect repellents: a critical review. Annual Review of Entomology 22: 101–119. DOI: https://doi.org/10.1146/annurev.en.22.010177.000533
Seljasen R., Meadow R. 2006. Effects of neem on oviposition and egg and larval development of Mamestra brassicae L: dose response, residual activity, repellent effect and systemic activity in cabbage plants. Crop Protection 25: 338–345. DOI: https://doi.org/10.1016/j.cropro.2005.05.007
Senthil-Nathan S. 2013. Physiological and biochemical effect of neem and other Meliaceae plants secondary metabolites against Lepidopteran insects. Front Physiology 4: 359. DOI: https://doi.org/10.3389/fphys.2013.00359
Shannag H., Capinera J., Freihat N.M. 2015. Effects of neem-based insecticides on consumption and utilization of food in larvae of Spodoptera eridania (Lepidoptera: Noctuidae). Journal of Insect Science 15 (1): 152. DOI: https://doi.org/10.1093/jisesa/iev134
Sharma A., Shahzad B., Kumar V., Kohli S.K., Sidhu G.P.S., Bali A.S., Handa N., Kapoor D., Bhardwaj R., Zheng B. 2019. Phytohormones regulate accumulation of osmolytes under abiotic stress. Biomolecules 9 (7): 1–36. DOI: https://doi.org/10.3390/biom9070285
Shimizu T. 1988. Suppressive effects of azadirachtin on spermiogenesis of the diapausing cabbage armyworm, Mamestra brassicae, in vitro. Entomologia Experimentalis et Applicata 46: 197–199.
Sieber K.P., Rembold H. 1983. The effects of azadirachtin on the endocrine control of moulting in Locusta migratoria. Journal of Insect Physiology 29: 523–527. DOI: https://doi.org/10.1016/0022-1910(83)90083-5
Smith S.L., Mitchell M.J..1988. Effects of azadirachtin on insect cytochrome P-450 dependant ecdysone 20-mono oxygenase activity. Biochemical and Biophysical Research Communications 154: 559–563. DOI: https://doi.org/10.1016/0006-291x(88)90176-3
Shu B., Zhang J., Cui G., Sun R., Yi X., Zhong G. 2018. Azadirachtin affects the growth of Spodoptera litura Fabricius by inducing apoptosis in larval midgut. Frontiers in Physiology 9: 1–12. DOI: https://doi.org/10.3389/fphys.2018.00137
Tanzubil P.B. 1995. Effects of neem Azadirachta indica (A. Juss) extracts on food intake and utilization in the African armyworm, Spodoptera exempta (Walker). Insect Science and its Application 16: 167–170. DOI: https://doi.org/10.1017/S1742758400017069
Tanzubil P.B., McCaffery A.R..1990. Effects of azadirachtin and aqueous neem seed extracts on survival, growth and development of the African armyworm, Spodoptera exempta. Crop Protection 9: 383–386. DOI: https://doi.org/10.1016/0261-2194(90)90012-V
Tome H.V.V., Martins J.C., Corrêa A.S., Galdino T.V.S., Picanço M.C., Guedes R.N.C. 2013. Azadirachtin avoidance by larvae and adult females of the tomato leaf miner Tuta absoluta. Crop Protection 46: 63–69. DOI: https://doi.org/10.1016/j.cropro.2012.12.021
Ünsal S., Güner E. 2016. The effects of biopesticide Azadirachtin on the Fifth Instar Galleria mellonella L. (Lepidoptera: Pyralidae) Larval Integument. International Journal of Crop Science and Technology. 2(2): 60-68.
Vilca Malqui K.S., Vieira J.L., Guedes R.N.C., Gontijo L.M. 2014. Azadirachtin-induced hormesis mediating shift in fecundity longevity trade-off in the Mexican bean weevil (Chrysomelidae: Bruchinae). Journal of Economic Entomology 107: 860–866. DOI: https://doi.org/10.1603/ec13526
Wallace E.L. 2017. Investigating Life History Stages and Methods to Interrupt the Life Cycle, and Suppress Offspring Production, in the Queensland Fruit Fly (Bactroceratryoni). Thesis (PhD Doctorate). Griffith School of Environment. Gold Coast, Queensland, Australia, 118 pp. DOI: https://doi.org/10.25904/1912/1946
Wilps H. 1989. The influence of neem seed kernel extracts (NSKE) from the neem tree Azadirachta indicaon flight activity, food ingestion, reproductive rate and carbohydrate metabolism in the Diptera Phormia terraenovae (Diptera, Muscidae). Zoologische Jahrbucher Physiology 93: 271–282.
Zada H., Naheed H., Ahmad B., Saljoqi A.Ur R., Salim M., Hassan E. 2018. Toxicity potential of different azadirachtin against Plutella Xylostella (Lepidoptera; Plutellidae) and its natural enemy, Diadegma species. Journal of Agronomy and Agricultural Science 1: 003. DOI: https://doi.org/10.24966/AAS-8292/100003
Zhong B., Chaojun L., Weiquan Q. 2017. Effectiveness of the botanical insecticide azadirachtin against Tirathaba rufivena (Lepidoptera: Pyralidae). Florida Entomological Society 100 (2): 215–218. DOI: https://doi.org/10.1653/024.100.0215
Go to article

Authors and Affiliations

Somaye Allahvaisi
1
Mahdi Hassani
2
Bahram Heidari
3

  1. Plant Protection Research Department, Hamedan Agriculture and Natural Resources Research and Education Center, AREEO, Hamedan, Iran
  2. Sugar Beet Research Department, Hamedan Agriculture and Natural Resources Research and Education Center, AREEO, Hamedan, Iran
  3. Department of Plant Production and Genetics, School of Agriculture, Shiraz University, Shiraz, Iran
Download PDF Download RIS Download Bibtex

Abstract

Planning maintenance costs is not an easy task. The amount of costs depends on many factors, such as value, age, condition of the property, availability of necessary resources and adopted maintenance strategy. The paper presents a selection of models which allow to estimate the costs of building maintenance, which are then applied to an exemplary office building. The two of the models allow a quick estimation of the budget for the maintenance of the building, following only indicative values. Two other methods take into account the change in the value of money over time and allow to estimate, assuming the adopted strategy and assumed costs, the value of the current amount allocated to the maintenance of the building. The final model is based on the assumptions provided for in Polish legislation. Due to significant simplifications in the models, the obtained results are characterized by a considerable discrepancy. However, they may form the basis for the initial budget planning related to the maintenance of the building. The choice of the method is left to the decision makers, but it is important what input data the decision maker has and the purpose for which he performs the cost calculation.
Go to article

Authors and Affiliations

Edyta Plebankiewicz
1
ORCID: ORCID
Agnieszka Leśniak
1
ORCID: ORCID
Eva Vitkova
2
ORCID: ORCID
Vit Hromadka
2
ORCID: ORCID

  1. Cracow University of Technology, Faculty of Civil Engineering, Warszawska 24, 31-155 Kraków, Poland
  2. Brno University of Technology, Faculty of Civil Engineering, Veverí 331/95, 602 00 Brno, Czech Republik
Download PDF Download RIS Download Bibtex

Abstract

Life cycles,number of eggs per female,minimal adult female length and reproductive costs are presented for 18 species of Amphipoda from the West Spitsbergen area, 77 –79 °N. Fifteen species incubated eggs during the polar night and released their offspring in early April. Three species incubated eggs from late spring till late summer. The appearance of the youngest juveniles, indicating the hatching period, is presented for 63 species. Most of the species studied were K strategists, with large eggs of over 1 mm diameter; only one species (Hyperoche medusarum ) was r – strategist.

Go to article

Authors and Affiliations

Jan Marcin Węsławski
ORCID: ORCID
Joanna Legeżyńska
ORCID: ORCID
Download PDF Download RIS Download Bibtex

Abstract

The main goal of the studies was to collect information on the impact of the identified risk factors on the amount of costs incurred in the life cycle of buildings. The own studies were focused especially on residential and non-residential buildings. The studies consisted in obtaining expert opinions on the subject of the research involves in the non-random (arbitrary) selection of a sample of respondents from among specialists corresponding to the industry purpose of the studies and the research material. The research used the expert questionnaire method. The studies were divided into three stages. In the first stage, the identification and division of risk factors in the life cycle of buildings was performed. Then, experts assessed 45 selected risk factors that may affect the amount of costs incurred in the life cycle of buildings. In the last step, the research results were developed in the form of a checklist knowledge base, containing information about the potential impact of the identified risk factors in the life cycle of buildings on the amount of the corresponding components of life cycle costs.
Go to article

Authors and Affiliations

Damian Wieczorek
1
ORCID: ORCID
Krzysztof Zima
1
ORCID: ORCID
Edyta Plebankiewicz
1
ORCID: ORCID

  1. Cracow University of Technology, Faculty of Civil Engineering, Warszawska St. 24, 31-155 Cracow, Poland
Download PDF Download RIS Download Bibtex

Abstract

The model for estimating the whole life costs of the building life cycle that allows the quantification of the risk addition lets the investor to compare buildings at the initial stage of planning a construction project in terms of the following economic criteria: life cycle costs (LCC), whole life costs (WLC), life cycle equivalent annual costs (LCEAC) and cost addition for risk (ΔRLCC). The subsequent stages of the model development have been described in numerous publications of the authors, while the aim of this paper is to check the accuracy of the model in the case of changing the parameters that may affect the results of calculations. The scope of the study includes: comparison of the results generated by the model with the solutions obtained in the life cycle net present value method (LCNPV) for time and financial input data, not burdened with the risk effect; the analysis of the variability of results due to changes in input data; analysis of the variability of results as a consequence of changing the sets of membership functions for input data and methods for defuzzification the result.

Go to article

Authors and Affiliations

E. Plebankiewicz
K. Zima
D. Wieczorek
Download PDF Download RIS Download Bibtex

Abstract

In this paper, the analysis of carbon footprint values for children’s footwear was conducted. This group of products is characterized by similar small mass and diversity in the used materials. The carbon footprint is an environmental indicator, which is used to measure the total sets of greenhouse gas (GHG) emissions into the atmosphere caused by a product throughout its entire lifecycle. The complexity of carbon footprint calculation methodology is caused by multistage production process. The probability of emission greenhouse gases exists at each of these stages. Moreover, a large variety of footwear materials – both synthetic and natural, give the possibility of the emission of a lot of waste, sewage and gases, which can be dangerous to the environment. The diversity of materials could be the source of problems with the description of their origins, which make carbon footprint calculations difficult, especially in cases of complex supply chains. In this paper, with use of life cycle assessment, the carbon footprint was calculated for 4 children’s footwear types (one with an open upper and three with full uppers). The life cycles of the product were divided into 8 stages: raw materials extraction (stage 1), production of input materials (stage 2), footwear components manufacture (stage 3), footwear manufacture (stage 4), primary packaging manufacture (stage 5), footwear distribution to customers (stage 6), use phase (stage 7) and product’s end of life (stage 8). On these grounds, it was possible to point out the life cycle stages, where the optimization activities can be implemented in order to reduce greenhouse gases emissions. The obtained results showed that the most intensive corrective actions should be focused on the following stages: 3 (the higher emissivity), 4 and 8.

Go to article

Authors and Affiliations

Wioleta Serweta
Robert Gajewski
Piotr Olszewski
Alberto Zapatero
Katarzyna Ławińska
Download PDF Download RIS Download Bibtex

Abstract

The problem of the proper functioning of Park-and-Ride facilities seems to be of key importance for ensuring appropriate transport in cities in which the intensity of road traffic is systematically increasing, together with the increase of environmental pollution (air pollution, noise etc.). The attractiveness of a car park of this kind seems obvious – instead of a burdensome journey in one’s own car, one changes the vehicle to fast municipal public transport or another means of transport (a bike, a scooter), or reaches the destination on foot. This results in benefits – above all in terms of comfort (shortening the time of the journey), health advantages etc. As has been proven by experiments, facilities of this kind are an expensive investment, the location of which (e.g. stand-alone) does not always ensure full utilization. The concept presented in the article assumes the possibility of a gradual extension of the multistorey car park following the increase of the demand. The article attempted to demonstrate that one of the sources of increasing attractiveness is the appropriate location (guaranteeing easy commute to the car park), the possibilities to continue the journey in an attractive way, then increasing the attractiveness through the possibility to use various services (shopping, the gym, the swimming pool, cinema, restaurants) and thirdly: the plan of launching the car park and its utilization in the life cycle should ensure the possibility of flexible reacting to changes of the demand (the experiences of the ongoing pandemic indicate that there is no guarantee of ensuring systematic demand increase). An element which also seems significant is the limitation of costs in the initial stage of investments of this kind with the possibility of gradual extension following the change of user habits.
Go to article

Authors and Affiliations

Jerzy Paslawski
1
ORCID: ORCID
Tomasz Rudnicki
2
ORCID: ORCID

  1. Poznan University of Technology, Faculty of Civil and Transport Engineering, 5 Piotrowo St., 60-965 Poznan, Poland
  2. Faculty of Civil Engineering and Geodesy, Military University of Technology in Warsaw,2 Gen. S. Kaliskiego St., 01-476 Warsaw, Poland
Download PDF Download RIS Download Bibtex

Abstract

In this study we investigate why bequests are left using a life course approach. Planned post mortem wealth transfers to children are linked with inter vivos transfers and inheritances left by the parents of the plan-makers. Individual decisions concerning wealth accumulation and bequeathing can be understood better if adjacent generations are taken into account. Moreover, particular events from an individual life history (widowhood, divorce, disease, and others) affect bequest decisions. A life course perspective proved fruitful in better understanding bequest behavior.

Go to article

Authors and Affiliations

Anna Nicińska
Download PDF Download RIS Download Bibtex

Abstract

Commercialization processes are modeled and analyzed from the point of view of the implementation of activities under particular stages. These issues are the subject of many studies and analyzes, which is why the extensive literature is available on this subject. Technology valuation at various stages of the commercialization process is a separate issue. Such valuation is prepared in most cases by consulting companies for determining the price in the buying and selling processes. These valuations use known methods also used in other cases, e.g., real estate valuation. The work carried out presents the author’s concept of the commercialization process model, taking into account the costs and value of the technology at various stages of the product life cycle. The model uses a stochastic approach to determine future revenues and costs, which allows estimating the value of the technology by or in determining the probability of assessment validity. The proposed stochastic approach greatly increases the chances of using the presented solutions in practical activities related to technology valuation for the purposes of purchase and sale transactions.
Go to article

Authors and Affiliations

Bozena Kaczmarska
1
Wacław Gierulski
1
ORCID: ORCID
Josef Zajac
2
Anton Bittner
2
Wacław Gierulski
1

  1. Kielce University of Technology, Poland
  2. Technical University of Kosice, Slovakia
Download PDF Download RIS Download Bibtex

Abstract

The occurence of the crustacean Branchinecta gaini was observed in the fresh-water ponds on King George Island. Morphological structure of the following developmental stages was described: nauplius, metanauplius, adult males, adult females, and gravid females with egg-sacs filled with eggs. The active phase of the life cycle of this species lasts 6 months (November-May). During that time one generation of Branchinecta develops. The reproductive season lasts from January until the freezing of the ponds.

Go to article

Authors and Affiliations

Wojciech Jurasz
Wojciech Kittel
Piotr Presler
Download PDF Download RIS Download Bibtex

Abstract

In this study, the environmental impacts of the organic fraction of municipal solid waste (OFMSW) treatment and its conversion in anaerobic digestion to glycerol tertiary butyl ether (GTBE) were assessed. The production process is a part of the innovative project of a municipal waste treatment plant. The BioRen project is funded by the EU’s research and innovation program H2020. A consortium has been set up to implement the project and to undertake specific activities to achieve the expected results. The project develops the production of GTBE which is a promising fuel additive for both diesel and gasoline. It improves engine performance and reduces harmful exhaust emissions. At the same time, the project focuses on using non-recyclable residual organic waste to produce this ether additive.

The aim of this paper is the evaluation through Life Cycle Assessment of the environmental impact GTBE production in comparison with a production of other fuels. To quantify the environmental impacts of GTBE production, the ILCD 2011 Midpoint+ v.1.10 method was considered. The study models the production of GTBE, including the sorting and separation of municipal solid waste (MSW), pre-treatment of organic content, anaerobic fermentation, distillation, catalytic dehydration of isobutanol to isobutene, etherification of GTBE with isobutene and hydrothermal carbonization (HTC).

The results indicate that unit processes: sorting and hydrothermal carbonization mostly affect the environment. Moreover, GTBE production resulted in higher environmental impact than the production of conventional fuels.

Go to article

Authors and Affiliations

Magdalena Muradin
Download PDF Download RIS Download Bibtex

Abstract

The objective of biological control is to reduce chemical treatments on crops. To reduce aphid attacks with the use lady beetles is a positive, respectful alternative since it can maintain an ecological balance. In order to achieve this objective, the Algerian seven-spotted lady beetle ( Coccinella algerica) was bred under laboratory conditions, and biological parameters of this species were studied. The study, conducted from April to May, showed that temperature and relative humidity greatly affected the incubation time of C. algerica eggs. Egg fertility was very high and reached up to 100%. The present work highlighted that the developmental cycle of this lady beetle from the Beni-Douala area (Tizi-Ouzou) passes through five larval stages. The fifth instar larva was recorded for the first time. Indeed, all studies carried out to date have identified only four larval stages in this species and have never mentioned the existence of L5, meaning that this result is original.
Go to article

Bibliography

1. Ben Halima-Kamel M., Ben Hamouda M.H. 2005. About aphids of fruit trees in Tunisia. Notes fauniques de Gembloux 58: 11–16.
2. Ben Halima Kamel M., Rebhi R., Ommezine A. 2011. Habitats and prey of Coccinella algerica Kovar in different coastal regions of Tunisia. Faunistic Entomology 63: 35–45. (in French, with English abstract)
3. Benoufella-Kitous K. 2015. Bioecology of aphids from different cultures and their natural enemies in Oued Aissi and Draâ Ben Khedda (Tizi-Ouzou). Doctoral thesis. National Agronomic School of El Harrach, Algiers, 334 p. (in French, with English abstract)
4. Brodeur J., Boivin G., Bourgeois G., Cloutier C., Doyon J., Grenier P., Gagnon A.E. 2013. Impact of climate change on the synchronism between pests and their natural enemies: consequences on biological control in agricultural environments in Quebec. Fonds vert, Québec, 99 p. (in French)
5. Dedryver C.A., Le Ralec A., Fabre F. 2010. Conflicting relationships between aphids and humans : a review of their damage and struggle strategies. Comptes Rendus Biologies 333: 539–553. DOI : https://doi.org/10.1016/j.crvi.2010.03.009 (in French, with English abstract)
6. Ferran A., Larroque M.M. 1979. Influence of abiotic factors on the nutritional physiology of larvae of the aphidophagous lady beetle Semiadalia undecimnotata (Col. : Coccinellidae); Temperature action. Entomophaga 24: 403–410. (in French, with English abstract)
7. Guesmi-Jouini J., Boughalleb-M´Hamdi N., Ben Halima-Kamel M. 2011. Preliminary studies on entomopathogenic fungi of artichoke aphids in Tunisia. Faunistic Entomology 63 (3): 171–181. (in French, with English abstract)
8. Harmel H., Francis F., Haubruge E., Giordanengo P. 2008. Physiology of interactions between potato and aphids: towards a new struggle strategy based on plant defense systems. Cahiers agricultures 17 (4): 395–400. DOI: https://doi.org/10.1684/agr.2008.0209 (in French, with English abstract)
9. Iperti G. 1964. Parasites of aphidophagous lady beetles in the Alpes-Maritimes and Basses-Alpes. Entomophaga 9 (2): 153–180.
10. Iperti G. 1986. Laddy beetles from France. Phytoma 377: 14–22.
11. Iperti G., Brun J. 1978. Aphidophagous lady beetle. Office for Entomological Information Fiche : 13–16.
12. Legemble J. 2009. Lady beetles. High Normandy Regional Food Service Fiche : 1–6.
13. Milaire H.G. 1986. From integrated pest management to integrated agricultural production, application to fruit crops. Adalia 3: 76–78.
14. Ongagna P., Giuge L., Iperti G., Ferran A. 1993. Development cycle of Harmonia axyridis (Coleoptera : Coccinellidae) in its area of introduction: the South-East of France. Entomophaga 38 (1): 125–128. (in French, with English abstract)
15. Rahmouni M., Belhamra M., Ben Salah M.K. 2017. Biological control by (Coccinella algerica, Kovar 1977) against the puceron of crops under greenhouses (station bioressources of el outaya CRSTRA) Biskra; Algeria. Journal of Fundamental and Applied Sciences 9 (3): 1585–1597. DOI: http://dx.doi.org/10.4314/jfas.v9i3.21
16. Roy M., Frechette M., Ouellet J. 2010. How to Differentiate the Main Species of Lady Beetles Found in Quebec. Ministry Agriculture, Fisheries, Food, Quebec, 6 p.
17. Saharaoui L. 1987. Inventory of entomophagous lady beetles (Coleoptera, Coccinellidae) in the Mitidja plain and bioecological overview of the main species encountered, for an appreciation of their entomophagous role. African Journal of Zoology 108: 537–546. (in French, with English abstract)
18. Saharaoui L. 1998. Lady Beetles Systematics (Coleoptera, Coccinellidae). Handout. National Institute of Agronomy, El-Harrach-Algiers, 24 pp. (in French)
19. Saharaoui L., Gourreau J.M. 1998. Lady Beetles of Algeria: preliminary inventory and diet (Coleoptera, Coccinellidae). Bulletin de la Société Entomologique de France 103 (3): 213–224. (in French, with English abstract)
20. Saharaoui L., Gourreau J.M. 2000. Lady beetles of Algeria: preliminary inventory and diet (Coleoptera, Coccinellidae). Recherche Agronomique 6: 1l–27. (in French, with English abstract)
21. Saharaoui L., Gourreau J.M., Iperti G. 2001. Study of some biological parameters of the aphidophagous lady beetles of Algeria (Coleoptera : Coccinellidae). Bulletin de la Société Entomologique de France 126 (4): 351–373.
22. Schanderi H., Ferran A., Larroque M.M. 1985. Les besoins trophiques et thermiques des larves de la coccinelle Harmonia axyridis Pallas. Agronomie 5 (5): 417- 421. (in French, with English abstract)
23. Schaub L., Bloesch B., Graf B., Höhn H. 2010. Coccinelles. Fiche: 802. Agroscope Rac Faw, Wädenswil, 3 pp. (in French)
Go to article

Authors and Affiliations

Karima Benoufella-Kitous
1
Naima Mehalli-Ouldkadi
2
Katia Temzi
1

  1. Laboratory of Production, Improvement and Protection of Plants, Department of Animal and Plant Biology, Faculty of Biological Sciences and Agronomic Sciences, Mouloud Mammeri University of Tizi-Ouzou, Tizi-Ouzou, Algeria
  2. Laboratory of Production, Safeguard of Threatened Species and Crops, Department of Animal and Plant Biology, Faculty of Biological Sciences and Agronomic Sciences, Mouloud Mammeri University of Tizi-Ouzou, Tizi-Ouzou, Algeria
Download PDF Download RIS Download Bibtex

Abstract

The paper presents an application of Life Cycle Assessment (LCA) method for the environmental evaluation of the technologies for the fertilizers production. LCA has been used because it enables the most comprehensive identifi cation, documentation and quantifi cation of the potential impacts on the environment and the evaluation and comparison of all signifi cant environmental aspects. The main objective of the study was to assess and compare two technologies for the production of phosphorus (P) fertilizers coming from primary and secondary sources. In order to calculate the potential environmental impact the IMPACT 2002+ method was used. The fi rst part of the LCA included an inventory of all the materials used and emissions released by the system under investigation. In the following step, the inventory data were analyzed and aggregated in order to calculate one index representing the total environmental burden. In the scenario 1, fertilizers were produced with use of an integrated technology for the phosphorus recovery from sewage sludge ash (SSA) and P fertilizer production. Samples of SSA collected from two Polish mono-incineration plants were evaluated (Scenario 1a and Scenario 1b). In the scenario 2, P-based fertilizer (reference fertilizer – triple superphosphate) was produced from primary sources – phosphate rock.

The results of the LCA showed that both processes contribute to a potential environmental impact. The overall results showed that the production process of P-based fertilizer aff ects the environment primarily through the use of the P raw materials. The specifi c results showed that the highest impact on the environment was obtained for the Scenario 2 (1.94899 Pt). Scenario 1a and 1b showed the environmental benefi ts associated with the avoiding of SSA storage and its emissions, reaching -1.3475 Pt and -3.82062 Pt, respectively. Comparing results of LCA of P-based fertilizer production from diff erent waste streams, it was indicated that the better environmental performance was achieved in the scenario 1b, in which SSA had the higher content of P (52.5%) in the precipitate. In this case the lower amount of the energy and materials, including phosphoric acid, was needed for the production of fertilizer, calculated as 1 Mg P2O5. The results of the LCA may play a strategic role for the decision-makers in the aspect of searching and selection of the production and recovery technologies. By the environmental evaluation of diff erent alternatives of P-based fertilizers it is possible to recognize and implement the most sustainable solutions.

Go to article

Authors and Affiliations

Marzena Smol
1
ORCID: ORCID
Joanna Kulczycka
2
ORCID: ORCID
Łukasz Lelek
1
Katarzyna Gorazda
3
Zbigniew Wzorek
3

  1. Mineral and Energy Economy Research Institute, Polish Academy of Sciences
  2. AGH University of Science and Technology, Poland
  3. Cracow University of Technology, Poland
Download PDF Download RIS Download Bibtex

Abstract

Software vulnerability life cycles illustrate changes in detection processes of software vulnerabilities during using computer systems. Unfortunately, the detection can be made by cyber-adversaries and a discovered software vulnerability may be consequently exploited for their own purpose. The vulnerability may be exploited by cyber-criminals at any time while it is not patched. Cyber-attacks on organizations by exploring vulnerabilities are usually conducted through the processes divided into many stages. These cyber-attack processes in literature are called cyber-attack live cycles or cyber kill chains. The both type of cycles have their research reflection in literature but so far, they have been separately considered and modeled. This work addresses this deficiency by proposing a Markov model which combine a cyber-attack life cycle with an idea of software vulnerability life cycles. For modeling is applied homogeneous continuous time Markov chain theory.
Go to article

Authors and Affiliations

Romuald Hoffmann
1

  1. Institute of Computer and Information Systems, Faculty of Cybernetics, Military University of Technology, Warsaw, Poland
Download PDF Download RIS Download Bibtex

Abstract

Life Cycle Assessment (LCA) is an important tool of Circular Economy (CE), which performs the analysis in a closed loop (“cradle-to-cradle”) of any product, process or technology. LCA assesses the environmental threats (climate change, ozone layer depletion, eutrophication, biodiversity loss, etc.), searches for solutions to minimize environmental burdens and together with CE contributes to reducing greenhouse gas emission, counteracts global climate crisis. The CE is a strategy for creating value for the economy, society and business while minimizing resource use and environmental impacts through reducing, re-using and recycling. In contrast, life cycle assessment is a robust and science-based tool to measure the environmental impacts of products, services and business models. Combining both the robustness of the LCA methodology and the principles of circular economy one will get a holistic approach for innovation. After a presentation of the LCA framework and methods used, 27 examples of case studies of comparative LCA analysis for replacement materials to reduce environmental load and their challenges as assessment methods for CE strategies are presented. It was concluded that there is a need for improvement of existing solutions, developing the intersection between the CE and LCA. Suggestions for developing a sustainable future were also made.
Go to article

Authors and Affiliations

Stanisław Ledakowicz
1
ORCID: ORCID
Aleksandra Ziemińska-Stolarska
1
ORCID: ORCID

  1. Faculty of Process and Environmental Engineering, Lodz University of Technology, 213 Wólczańska Street, 90-924 Lodz, Poland
Download PDF Download RIS Download Bibtex

Abstract

This paper attempts to conduct a comparative life cycle environmental analysis of alternative versions of a product that was manufactured with the use of additive technologies. The aim of the paper was to compare the environmental assessment of an additive-manufactured product using two approaches: a traditional one, based on the use of SimaPro software, and the authors’ own concept of a newly developed artificial intelligence (AI) based approach. The structure of the product was identical and the research experiments consisted in changing the materials used in additive manufacturing (from polylactic acid (PLA) to acrylonitrile butadiene styrene (ABS)). The effects of these changes on the environmental factors were observed and a direct comparison of the effects in the different factors was made. SimaPro software with implemented databases was used for the analysis. Missing information on the environmental impact of additive manufacturing of PLA and ABS parts was taken from the literature for the purpose of the study. The novelty of the work lies in the results of a developing concurrent approach based on AI. The results showed that the artificial intelligence approach can be an effective way to analyze life cycle assessment (LCA) even in such complex cases as a 3D printed medical exoskeleton. This approach, which is becoming increasingly useful as the complexity of manufactured products increases, will be developed in future studies.
Go to article

Authors and Affiliations

Ewa Dostatni
1
ORCID: ORCID
Anna Dudkowiak
1
ORCID: ORCID
Izabela Rojek
2
ORCID: ORCID
Dariusz Mikołajewski
2
ORCID: ORCID

  1. Institute of Material Technology, Poznan University of Technology, Piotrowo 3, 60-965 Poznan, Poland
  2. Institute of Computer Science, Kazimierz Wielki University, Chodkiewicza 30, 85-064 Bydgoszcz, Poland
Download PDF Download RIS Download Bibtex

Abstract

Occurrences associated with the phenomena of climate change are increasingly visible. Effects of progressive environmental pollution are monitored with growing concern. Still, in the construction sector, the choice of sustainable materials and the knowledge concerning them is insignificant. Studies have shown that single-family residential buildings form the largest share of new buildings in Central European countries. It should be assumed that it is the improvement of this particular section of the construction sector to be the goal of further development of societies. This paper presents a case study of the construction of a house using straw - a material that, on the one hand, is a product associated with local tradition, while significantly reducing carbon footprint of its production and use, on the other. The construction of a prototypical house with the application of composite technology, i.e. timber framing with straw bale infill, was compared with a conventional method (ceramic masonry units) which is currently the most popular choice for building single-family houses in Poland. The study is based on the building’s life cycle assessment (LCA) over its consecutive phases as a tested and reliable method of the verification of a material’s impact on the environment.
Go to article

Authors and Affiliations

Magdalena Kozień-Woźniak
1
ORCID: ORCID
Marta Fąfara
2
ORCID: ORCID
Łukasz Łukaszewski
3
ORCID: ORCID
Eliza Owczarek
4
ORCID: ORCID
Marcin Gierbienis
4
ORCID: ORCID

  1. DSc., PhD., Eng., Arch., Cracow University of Technology, Faculty of Architecture, ul. Warszawska 24, 31-115 Cracow, Poland
  2. PhD., Eng., Arch., Cracow University of Technology, Faculty of Architecture, ul. Warszawska 24, 31-115 Cracow, Poland
  3. PhD., Eng., Cracow University of Technology, Faculty of Civil Engineering, ul. Warszawska 24, 31-115 Cracow, Poland
  4. MSc., Eng., Arch., Cracow University of Technology, Faculty of Architecture, ul. Warszawska 24, 31-115 Cracow, Poland
Download PDF Download RIS Download Bibtex

Abstract

Popular, traditional building materials typically exhibit a high energy intensity and a detrimental effect on the environment. Only a negligible part of them are recovered and recycled, re-used in the building trade or other branches of industry. However, the technology of building detached houses based on ceramic blocks is still most often favored by investors due to its price and high availability (in terms of materials and workmanship). The research indicates that 25–30% of CO2 emissions generated by buildings originate from materials and their manufacturing process. In contrast, 70–75% can be attributed to the use of buildings over a longer period of time. As a result, the importance of alternative materials with minimal environmental impacts is growing year by year. Eco-friendly housing, using natural products, pollutes the environment less significantly compared to conventional construction. Its key element is the use of materials characterized by the lowest possible degree of processing, and thus by the lowest possible embodied energy. A type of material that perfectly fits into the above assumptions is straw bale. The purpose of the article focus on, four variants of a construction of detached house have been compared by means of the LCA method. Variant I – the reference one, presents the technology utilizing ceramic hollow bricks, variants II, III and IV are eco-friendly technologies employing wood and straw. The study presents the amount of energy required for construction and carbon footprint that remains in the environment following the construction of the buildings.
Go to article

Authors and Affiliations

Marta Fąfara
1
ORCID: ORCID
Łukasz Łukaszewski
2
ORCID: ORCID
Eliza Owczarek
1
ORCID: ORCID
Izabela Źrebiec
2
ORCID: ORCID

  1. Cracow University of Technology, Faculty of Architecture, Warszawska 24, 31-155 Cracow, Poland
  2. Cracow University of Technology, Faculty of Civil Engineering, Warszawska 24, 31-155 Cracow, Poland
Download PDF Download RIS Download Bibtex

Abstract

The industrial revolution taking place since the 18th century has brought the global economies to the stage of mass production, mass industrialization and spreading ideas connected with its efficiency. The most famous of its kind is Fordism and its modern variations called PostFordism or Neo-Fordism. We can still see traditional way of producing things in some parts of the world, and the leading economies are using Ford’s ideas or the modifications of the Ford’s concepts. But there is a question about the place of these models in the modern economy, especially because mass-production causes mass-waste and modern societies has woken up to the reality of the global pollution, climate change or just the simple fact that the amount of the raw materials is limited. The social mood is slowly changing so there should be a change to the way we produce and consume things as well. There is a question: can we proceed within existing models or should we think outside the box so we can invent more suitable way of looking at efficiency and effectiveness. The objective of this paper is to contribute to the discussion about the future of how are we going to produce things. It is based on the literature review considering Fordism and its variations, Product Life Cycle facing issues like pollution, massive waste and changes in modern economy, as well as on the case study of implementing waste reduction activities in the product’ design phase in the industrial plant based in one of the EU countries – Poland.
Go to article

Authors and Affiliations

Mariusz Bednarek
1 2
Aneta Parkes
3

  1. Wyższa Szkoła Bankowa, Warszawa, Poland
  2. Universidad Autonoma de Chile, Temuco, Chile
  3. Społeczna Akademia Nauk, Łódź, Poland
Download PDF Download RIS Download Bibtex

Abstract

Management and Production Engineering Review (MPER) is a peer-refereed, international, multidisciplinary journal covering a broad spectrum of topics in production engineering and management. Production engineering is a currently developing stream of science encompassing planning, design, implementation and management of production and logistic systems. Orientation towards human resources factor differentiates production engineering from other technical disciplines. The journal aims to advance the theoretical and applied knowledge of this rapidly evolving field, with a special focus on production management, organisation of production processes, management of production knowledge, computer integrated management of production flow, enterprise effectiveness, maintainability and sustainable manufacturing, productivity and organisation, forecasting, modelling and simulation, decision making systems, project management, innovation management and technology transfer, quality engineering and safety at work, supply chain optimization and logistics. Management and Production Engineering Review is published under the auspices of the Polish Academy of Sciences Committee on Production Engineering and Polish Association for Production Management. The main purpose of Management and Production Engineering Review is to publish the results of cutting-edge research advancing the concepts, theories and implementation of novel solutions in modern manufacturing. Papers presenting original research results related to production engineering and management education are also welcomed. We welcome original papers written in English. The Journal also publishes technical briefs, discussions of previously published papers, book reviews, and editorials. Letters to the Editor-in-Chief are highly encouraged.
Go to article

Authors and Affiliations

Saltanat BEISEMBINA
Mamyrbek BEISENBI
Nurgul KISSIKOVA
Aliya Shukirova
Download PDF Download RIS Download Bibtex

Abstract

In the developing countries, to build earthquake resistance construction along with seismic retrofit technology, the focus towards global warming problems along with sustainable society, production utilizing natural material, Bamboo lower-cost faster-growing and broad distribution of growth is promoted crucially. To get knowledge about the Bamboo Reinforced Concrete’s (BRC) mechanical behavior along with to verify the variations of structural properties betwixt Steel Reinforced Concrete (SRC) and BRC, researches have been made by several authors. BRC beams are simple, effective, along with cost-effective for rural construction and for which the trials are made in these studies. There is a huge concern over the lifespan of bamboo as it is employed as a substitute for steel; thus, it is enhanced by undergoing certain mechanical along with chemical treatments. The parametric study displays that regarding the robustness along with stability, bamboo is utilized in Reinforced Concrete (RC). Here, the Bamboo Reinforcement’s (BR) performance together with its durability is illustrated by assessing the laboratory determinations as of the available literature.
Go to article

Authors and Affiliations

Amogh Ajay Malokar
1
ORCID: ORCID
Premanand L. Naktode
1
ORCID: ORCID

  1. School of Engineering & Technology, Department of Civil Engineering, Sandip University, Nashik, Maharashtra, India
Download PDF Download RIS Download Bibtex

Abstract

The article aims to increase knowledge on methods for assessing Greenhouse Gases (GHG) emissions throughout the life cycle of marine alternative fuels. The life cycle of new marine alternative fuels and the assessment of GHG emissions resulting not only from their combustion is one of the new topics that are currently being discussed by the IMO, under the ‘Initial IMO GHG Reduction Strategy’ announced by the Organization in 2018. The IMO Marine Environment Protection Committee (IMO MEPC) is currently working on the development of Guidelines for Life-Cycle Assessment of GHG emissions for marine fuels from their extraction, through transport, processing, bunkering on board and end use in vessels propulsion systems, what is often called ‘from Cradle-to-Grave’. The use of fossil hydrocarbon fuels is common throughout the shipping industry, but in recent years ships with alternative energy sources have begun to be successfully introduced. Alternative fuels, although they may have low, zero or zero net GHG emissions in use (Tank to Wake or TtW), GHG emissions during their production, processing and distribution (Well-to-Tank or WtT) can vary widely. While a range of low-carbon and zero-carbon energy sources are potentially available for shipping, currently there is no clear decarbonization path or paths, and is likely that in the future a range of solutions will be adopted according to different vessel and operational requirements.
Go to article

Authors and Affiliations

Krzysztof Kołwzan
1

  1. Centre for IMO Affairs, Polish Register of Shipping

This page uses 'cookies'. Learn more