Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 6
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

The paper presents a new method of lifetime calculations of steam turbine components operating at high temperatures. Component life is assessed on the basis of creep-fatigue damage calculated using long-term operating data covering the whole operating period instead of representative events only. The data are analysed automatically by a dedicated computer program developed to handle big amount of process data. Lifetime calculations are based on temperature and stress analyses performed by means of finite element method and using automatically generated input files with thermal and mechanical boundary conditions. The advanced lifetime assessment method is illustrated by an example of lifetime calculations of a steam turbine rotor.

Go to article

Authors and Affiliations

Mariusz Banaszkiewicz
Wojciech Radulski
Krzysztof Dominiczak
Download PDF Download RIS Download Bibtex

Abstract

The paper presents experimental results of the lifetime of light induced excess carriers in the n-type silicon. The lifetimes of carriers of silicon crystals were analysed as a function of the intensity of light illuminating the sample. As a measurement method of the lifetime of carriers, the photoacoustic method in a transmission configuration with different surfaces was used. The dependence character was next analysed in the frame of the Shockley Reed Hall statistics in approximation of the light low intensity.

Go to article

Authors and Affiliations

L. Bychto
M. Maliński
Download PDF Download RIS Download Bibtex

Abstract

Accurate determination of the probability structure of the multistate model is significant from the valuation and profitability assessment of insurance contracts standpoint. This article aims to analyse the effect of spouses' future lifetime dependence on premiums and prospective reserves for marriage insurance contracts. As a result, under the assumptions that the evolution of the insured risk is described by a nonhomogeneous Markov chain and the dependence between spouses' future lifetime is modelled by the copula, we derive formulas for the elements of the transition matrices. Based on actual data, we conduct a comparative analysis of actuarial values for three scenarios related to future lifetimes of husband and wife. We test the robustness of premium value to the changing degree of dependency between spouses' future lifetimes.
Go to article

Authors and Affiliations

Joanna Dębicka
1
Stanisław Heilpern
1
Agnieszka Marciniuk
1

  1. Wrocław University of Economics and Business
Download PDF Download RIS Download Bibtex

Abstract

Due to the severe damages of nuclear accidents, there is still an urgent need to develop efficient radiation detection wireless sensor networks (RDWSNs) that precisely monitor irregular radioactivity. It should take actions that mitigate the severe costs of accidental radiation leakage, especially around nuclear sites that are the primary sources of electric power and many health and industrial applications. Recently, leveraging machine learning (ML) algorithms to RDWSNs is a promising solution due to its several pros, such as online learning and self-decision making. This paper addresses novel and efficient ML-based RDWSNs that utilize millimeter waves (mmWaves) to meet future network requirements. Specifically, we leverage an online learning multi-armed bandit (MAB) algorithm called Thomson sampling (TS) to a 5G enabled RDWSN to efficiently forward the measured radiation levels of the distributed radiation sensors within the monitoring area. The utilized sensor nodes are lightweight smart radiation sensors that are mounted on mobile devices and measure radiation levels using software applications installed in these mobiles. Moreover, a battery aware TS (BATS) algorithm is proposed to efficiently forward the sensed radiation levels to the fusion decision center. BA-TS reflects the remaining battery of each mobile device to prolong the network lifetime. Simulation results ensure the proposed BA-TS algorithm’s efficiency regards throughput and network lifetime over TS and exhaustive search method.
Go to article

Bibliography

[1] R. Elhabyan, W. Shi and M. St-Hilaire, ”Coverage protocols for wireless sensor networks: Review and future directions,” Journal of Communications and Networks, 21, (1), 45-60, Feb. 2019, DOI: 10.1109/JCN.2019.000005.
[2] X. Ge, Q. Han, X. Zhang, L. Ding and F. Yang, ”Distributed Event-Triggered Estimation Over Sensor Networks: A Survey,” IEEE Transactions on Cybernetics, 50 (3), 1306-1320, March 2020, DOI: 10.1109/TCYB.2019.2917179.
[3] International ATomic Energy Authority (IAEA) accident reports available online, https://www.iaea.org/topics/accident-reports.
[4] R. R. Kumar, L. Macwin and R. Rathna, ”Nuclear radiation detection using Wireless Sensor Network,” 2015 International Conference on Innovations in Information, Embedded and Communication Systems (ICIIECS), Coimbatore, 2015, pp. 1-4, DOI: 10.1109/ICIIECS. 2015.7192790.
[5] R. Dersch,Primary and secondary measurements of 222Rn, Journal of Applied Radiation and Isotopes, 60, Issues 2–4, 2004, Pages 387-39, 2004, DOI: 10.1016/j.apradiso.2003.11.046.
[6] Drew, Christina Grace, Deirdre Silbernagel, Susan Hemmings, Erin Smith, Alan Griffith, William Takaro, Tim Faustman, Elaine, ”Nuclear Waste Transportation: Case Studies of Identifying Stakeholder Risk Information Needs”. Environmental Health Perspectives, 111, 263- 72, DOI: 10.1289/ehp.5203.
[7] Manar, M.K., Mohamed, S., Hashima, S., Imbaby, I.M., Amal-Eldin, M., Nesreen, I. “Hardware Implementation for Pileup Correction Algorithms in Gamma Ray Spectroscopy. International Journal of Computer Applications, 176, 43-48, 2017. DOI: 10.5120/ijca2017915634
[8] Bensaleh, Mohammed Saida, Raoudha Hadj kacem, Yessine Abid, Mohamed. ”Wireless Sensor Network Design Methodologies: A Survey”. Journal of Sensors, pp.1-13, 2020. DOI: 10.1155/2020/9592836.
[9] B. Xing, R. Ding and J. Wang, ”Design of Wireless Sensor Network for Protection of X-Ray Detection,” 2013 6th International Conference on Intelligent Networks and Intelligent Systems (ICINIS), Shenyang, 2013, pp. 282-285, DOI: 10.1109/ICINIS.2013.79.
[10] M. Altayeb, M. Mekki, O. Abdallah, A. B. Mustafa and S. Abdalla, ”Automobile and fixed wireless sensor network for radiation detection,” 2015 International Conference on Computing, Control, Networking, Electronics and Embedded Systems Engineering (ICCNEEE), Khartoum, 2015, pp. 199-202, DOI: 10.1109/ICCNEEE.2015.7381361.
[11] C. Liu, P. -. Drouin, G. St-Jean, M. D´eziel and D. Waller, ”Wireless Radiation Sensor Network with directional radiation detectors,” IEEE Nuclear Science Symposium and Medical Imaging Conference (NSS/MIC), Seattle, WA, pp. 1-6, 2014. DOI: 10.1109/NSSMIC.2014.7431111.
[12] Jianxin Sun, ”Radiation detection using mobile sensor networks”, PhD thesis, University of Delaware, Spring 2016.
[13] Ding, Fei Zhang, Deng-yin Wang, Wanping Lei, Zhenzhong. (2018). ”A Low Complexity Active Sensing and Inspection System for Monitoring of Moveable Radiation Environments”. Journal of Sensors, 2018, 1-9. 10.1155/2018/8096012.
[14] M. S. Muktadir, S. Islam and A. R. Alam Chowdhury, ”Development of a Wireless Safety System Based on Multiple Radiation Detector for Nuclear Facilities,” International Conference on Robotics, Electrical and Signal Processing Techniques (ICREST), Dhaka, Bangladesh, pp. 539- 542, 2019. DOI: 10.1109/ICREST.2019.8644312.
[15] Vasile Buruian˘a, Mihaela Oprea. A Microcontroller-Based Radiation Monitoring and Warning System. 8th International Conference on Artificial Intelligence Applications and Innovations (AIAI), Sep 2012, DOI: 10.1007/978-3-642-33412-2 39.
[16] Barbar´an, Javier D´ıaz, a Esteve, I˜naki Rubio, Bartolom´e. RadMote: a mobile framework for radiation monitoring in nuclear power plants, 2007.
[17] S. Duraisamy, G. K. Pugalendhi and P. Balaji, ”Reducing energy consumption of wireless sensor networks using rules and extreme learning machine algorithm,” The Journal of Engineering, vol. 2019, no. 9, pp. 5443-5448, 2019, DOI: 10.1049/joe.2018.5288.
[18] Thompson, William R. ”On the Likelihood That One Unknown Probability Exceeds Another in View of the Evidence of Two Samples.” Biometrika 25, no. 3/4, 1933. DOI: 10.2307/2332286.
[19] F. Wilhelmi, C. Cano, G. Neu, B. Bellalta, A. Jonsson, and S. Barrachina-Mu˜noz, “Collaborative spatial reuse in wireless networks via selfish multi-armed bandits,” Ad Hoc Networks, vol. 88, pp. 129–141, 10 2017. DOI: 10.1016/j.adhoc.2019.01.006.

Go to article

Authors and Affiliations

Sherief Hashima
1
Imbaby Mahmoud
2

  1. Engineering Dept., Nuclear Research Center, Egyptian Atomic Energy Authority, Cairo 13759, Egypt
  2. Radiation Engineering Dept., National Center of Radiation Research and Technology (NCRRT) Egyptian Atomic Energy Authority, Cairo, Egypt
Download PDF Download RIS Download Bibtex

Abstract

The operation of narrow-gap semiconductor devices under non-equilibrium mode is used at temperatures where the materials are normally intrinsic. The phenomenon of minority carrier exclusion and extraction was particularly discussed in the case of the suppression of Auger thermal generation in heterojunction photodiodes, especially important in the long-wave infrared range. This paper shows that the reduction of the dark current in the HgCdTe photodiode operating in the mid-wave infrared range is primarily the result of suppression of the Shockley-Read-Hall generation in the non-equilibrium absorber. Under a reverse bias, the majority carrier concentration is held equal to the majority carrier doping level. This effect also leads to a decreased majority carrier population at the trap level and an effective increase in the carrier lifetime. The analysed device was with the following design: p+-Bp cap-barrier unit, p-type absorber doped at the level of 8 ·1015 cm−3, and wide-bandgap N+ bottom contact layer. At room temperature, the lowest dark current density of 3.12 ·10−1 A/cm2 was consistent with the theoretically predicted Shockley-Read-Hall suppression mechanism, about two times smaller than for the equilibrium case.
Go to article

Authors and Affiliations

Małgorzata Kopytko
1
ORCID: ORCID

  1. Institute of Applied Physics, Military University of Technology, gen. Sylwestra Kaliskiego 2, 00 908 Warsaw, Poland
Download PDF Download RIS Download Bibtex

Abstract

Wireless sensor network is a dynamic field of networking and communication because of its increasing demand in critical Industrial and Robotics applications. Clustering is the technique mainly used in the WSN to deal with large load density for efficient energy conservation. Formation of number of duplicate clusters in the clustering algorithm decreases the throughput and network lifetime of WSN. To deal with this problem, advance distributive energy-efficient adaptive clustering protocol with sleep/wake scheduling algorithm (DEACP-S/W) for the selection of optimal cluster head is presented in this paper. The presented sleep/wake cluster head scheduling along with distributive adaptive clustering protocol helps in reducing the transmission delay by properly balancing of load among nodes. The performance of algorithm is evaluated on the basis of network lifetime, throughput, average residual energy, packet delivered to the base station (BS) and CH of nodes. The results are compared with standard LEACH and DEACP protocols and it is observed that the proposed protocol performs better than existing algorithms. Throughput is improved by 8.1% over LEACH and by 2.7% over DEACP. Average residual energy is increased by 6.4% over LEACH and by 4% over DEACP. Also, the network is operable for nearly 33% more rounds compared to these reference algorithms which ultimately results in increasing lifetime of the Wireless Sensor Network.
Go to article

Bibliography

[1] K. Sohraby, D. Minoli, T. Znati, “Wireless sensor networks: technology, protocols, and applications,” John Wiley & Sons, 2007.
[2] K. Pavai, A. Sivagami and D. Sridharan, "Study of Routing Protocols in Wireless Sensor Networks,” 2009 International Conference on Advances in Computing, Control and Telecommunication Technologies, Trivandrum, Kerala, 2009, pp. 522-525.
[3] D. Goyal and M. R. Tripathy, "Routing Protocols in Wireless Sensor Networks: A Survey,"2012 Second International Conference on Advanced Computing & Communication Technologies, Rohtak, Haryana, 2012, pp. 474-480.
[4] NasirSaeed, Ahmed Bader, T.Y. Al-Naffouri, Mohamed-slim Alouini, “When Wireless Communication Faces COVID-19: Combating the Pandemic and Saving the Economy,” Research Gate Journal, May 2020.
[5] Jitendra Singh, Rakesh Kumar, “Clustering algorithms for wireless sensor networks: A review,” 2nd International Conference on Computing for Sustainable Global Development, May 2015.
[6] S. Misra and R. Kumar, "A literature survey on various clustering approaches in wireless sensor network," IEEE 2nd International Conference on Communication Control and Intelligent Systems (CCIS), Mathura, 2016, pp. 18-22.
[7] S. Mishra, R. Bano, S. Kumar and V. Dixit, "A literature survey on routing protocol in wireless sensor network," IEEE International Conference on Innovations in Information, Embedded and Communication Systems (ICIIECS), Coimbatore, 2017, pp. 1-4.
[8] Kalyani Wankhede, Sumedha Sirsikar, “Review of Clustering Algorithms in Wireless Sensor Networks,” International Journal of Advance Foundation and Research in Computer (IJAFRC), Volume 1, Issue 11, November 2014, pp.126-133.
[9] Sangho Yi, Junyoung Heo, Yookun Cho and Jiman Hong b, “PEACH: Power-efficient and adaptive clustering hierarch protocol for wireless sensor networks,” Computer Communications, ELSEVIER, 23 June 2007, pp. 2842–2852.
[10] K. T. Kim and H. Y. Youn, “Energy-Driven Adaptive Clustering Hierarchy (EDACH) for Wireless Sensor Networks,” International Federation of Info. Processing, vol. 3823, Dec. 2005, pp. 1098–1107.
[11] V. Loscri, G. Morabito and S. Marano, “A Two-Level Hierarchy for Low-Energy Adaptive Clustering Hierarchy(TL-LEACH),” IEEE Proceedings of Vehicular Technology Conference, vol. 3, 2005, pp. 1809-1813.
[12] S. Nasr, M. Quwaider, “LEACH Protocol Enhancement for Increasing WSN Lifetime,” 2020 11th International Conference on Information and Communication Systems (ICICS), April 2020, pp. 102-107.
[13] M. Kaddi, Z. Khalili, M. Bruchra, “A Differential Evolution Based Clustering and Routing Protocol for WSN,” 2020 International Conference on Mathematics and Information Technology, March 2020, pp. 190-195.
[14] G. Malshetty, B. Mathapati, “Efficient Clustering in WSN-Cloud using LBSO (Load Based Self Organised) technique,” Third International Conference on Trends in Electronics and Informatics(ICOEI), October 2019, pp. 1243-1247.
[15] K. Dubey, A. Yadav, P. Kumar, P. Shekar, P. Rajput, S. Kumar, “Power Optimization Algorithm for Heterogeneous WSN using Multiple Attributes,” Proceedings of Third International Conference on Computing Methodologies and Communication (ICCMC), August 2019, pp. 294-299.
[16] O. Younis, S. Fahmy, “HEED: A Hybrid Energy-Efficient Distributed Clustering Approach for Ad Hoc Sensor Networks,” IEEE Transactions on mobile computing, vol. 3(4) , 2004, pp. 1-36
[17] A. Manjeshwar, D. P. Agrawal, “TEEN: A Routing Protocol for Enhanced Efficiency in Wireless Sensor Networks,” 15th International Workshop on Parallel and Distributed Processing Symposium (IPDPS), 23–27 April 2001, pp. 2009–2015.
[18] A. Manjeshwar, D. P. Agrawal, “APTEEN: A Hybrid Protocol for Efficient Routing and Comprehensive Information Retrieval in Wireless Sensor Networks,” 2nd International Workshop on Parallel and Distributed Computing Issues in Wireless Networks and Mobile Computing,” April 2002, pp. 195–202.
[19] Chirihane Gherbi, Zibouda Aliouat, Mohamed Benmohammed, “A Novel Load Balancing Scheduling Algorithm For Wireless Sensor Networks,” Journal of Network And Systems Management (2019) 27, pp. 430–462.
[20] Heinzelman W,Chandrakasan A and Balakrishnan H, "Energy-Efficient Communication Protocols for Wireless Microsensor Networks," Proceedings of the 33rd Hawaaian International Conference on Systems Science (HICSS), January 2000.
[21] JiuqiangXu, Wei Liu, Fenggao Lang, Yuanyuan Zhang, Chenglong Wang, “Distance Measurement Model Based on RSSI in WSN,” Scientific Research Journal on Wireless Sensor Network, August 2010, pp. 606-611
[22] Nazir Babar, Hasbullah Halabi & Madani Sajjad, “Sleep/wake scheduling scheme for minimizing end-to-end delay in multi-hop wireless sensor networks,” EURASIP Journal on Wireless Communications and Networking, 2011, art. no 92. doi: 10.1186/1687-1499-2011-92.

Go to article

Authors and Affiliations

Shankar D. Chavan
1
Shahaji R. Jagdale
1
Dhanashree A. Kulkarni
1
Sneha R. Jadhav
1

  1. Dr. D. Y. Patil Institute of Technology, Pimpri, Pune

This page uses 'cookies'. Learn more