Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 9
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

A thermal resistance characterization of semiconductor quantum-well heterolasers in the AlGaInAs-AlGaAs system (λst ≈ 0.8 μm), GaSb-based laser diodes (λst ≈ 2 μm), and power GaN light-emitting diodes (visible spectral region) was performed. The characterization consists in investigations of transient electrical processes in the diode sources under heating by direct current. The time dependence of the heating temperature of the active region of a source ΔT(t), calculated from direct bias change, is analyzed using a thermal RTCT equivalent circuit (the Foster and Cauer models), where RT is the thermal resistance and CT is the heat capacity of the source elements and external heat sink. By the developed method, thermal resistances of internal elements of the heterolasers and light-emitting diodes are determined. The dominant contribution of a die attach layer to the internal thermal resistance of both heterolaser sources and light-emitting diodes is observed. Based on the performed thermal characterization, the dependence of the optical power efficiency on current for the laser diodes is determined.

Go to article

Authors and Affiliations

Yurii Bumai
Aleh Vaskou
Valerii Kononenko
Download PDF Download RIS Download Bibtex

Abstract

The compositional graded quaternary barriers (GQBs) instead of ternary/conventional quantum barriers (QBs) have been used to numerically enhance the efficiency of AlGaN-based ultraviolet light-emitting diode (LED). The performance of LED with GQBs is examined through carrier concentrations, energy band diagrams, radiative recombination, electron and hole flux, internal quantum efficiency (IQE), and emission spectrum. As a function of the operating current density, a considerable reduction in efficiency droop is observed in the device with composition-graded quaternary barriers as compared to the conventional structure. The efficiency droop in case of a conventional LED is ~77% which decreased to ~33% in case of the proposed structure. Moreover, the concentration of electrons and holes across the active region in case of the proposed structure is increased to ~156% and ~44%, respectively.
Go to article

Bibliography

  1. Würtele, M. et al. Application of GaN-based ultraviolet-C light emitting diodes–UV LEDs–for water disinfection. Water Res. 45, 1481–1489 (2011), https://doi.org/10.1016/j.watres.2010.11.015
  2. Khan, A., Balakrishnan, K. & Katona, T. Ultraviolet light-emitting diodes based on group three nitrides. Nat. Photonics 2, 77–84 (2008), https://doi.org/10.1038/nphoton.2007.293
  3. Usman, M., Malik, S. & Munsif, M. AlGaN-based ultraviolet light-emitting diodes: Challenges and Opportunities. Luminescence 36, 294–305 (2021), https://doi.org/10.1002/bio.3965
  4. Hirayama, H., Maeda, N., Fujikawa, S., Toyoda, S. & Kamata, N. Recent progress and future prospects of AlGaN-based high-efficiency deep-ultraviolet light-emitting diodes. Jpn. J. Appl. Phys. 53, 100209 (2014), http://doi.org/10.7567/JJAP.53.100209
  5. Kneissl, M. A brief review of III-nitride UV emitter technologies and their applications. in III-Nitride Ultraviolet Emitters: Technology and Applications. Springer Series in Materials Science, vol 227. (eds. Kneissl, M. & Rass, J.) 1–25 (Springer Cham, 2016). https://doi.org/10.1007/978-3-319-24100-5_1
  6. Usman, M., Malik, S., Khan, M. A. & Hirayama, H. Suppressing the efficiency droop in AlGaN-based UVB LEDs. Nanotechnology 32, 215703 (2021), https://doi.org/10.1088/1361-6528/abe4f9
  7. Heilingloh, C. S. et al. Susceptibility of SARS-CoV-2 to UV irradiation. Am. J. Infect. Control 48, 1273¬1275 (2020), https://doi.org/10.1016/j.ajic.2020.07.031
  8. Khan, M. A., Shatalov, M., Maruska, H., Wang, H. & Kuokstis, E. III–nitride UV devices. Jpn. J. Appl. Phys. 44, 7191 (2005), https://doi.org/10.1143/jjap.44.7191
  9. Kneissl, M. et al. Advances in group III-nitride-based deep UV light-emitting diode technology. Semicond. Sci. Technol. 26, 014036 (2010), https://doi.org/10.1088/0268-1242/26/1/014036
  10. Shatalov, M. et al. AlGaN deep-ultraviolet light-emitting diodes with external quantum efficiency above 10%. Appl. Phys. Express 5, 082101 (2012), https://doi.org/10.1143/apex.5.082101
  11. Pernot, C. et al. Development of high efficiency 255–355 nm AlGaN‐based light‐emitting diodes. Phys. Status Solidi A 208, 1594–1596 (2011), https://doi.org/10.1002/pssa.201001037
  12. Huang, C., Zhang, H. & Sun, H. Ultraviolet optoelectronic devices based on AlGaN-SiC platform: Towards monolithic photonics integration system. Nano Energy, 77, 105149 (2020), https://doi.org/10.1016/j.nanoen.2020.105149
  13. Chen, K. et al. Effect of dislocations on electrical and optical properties of n-type Al 0.34 Ga 0.66 N. Appl. Phys. Lett. 93, 192108 (2008), https://doi.org/10.1063/1.3021076
  14. Hirayama, H., Tsukada, Y., Maeda, T. & Kamata, N. Marked enhancement in the efficiency of deep-ultraviolet AlGaN light-emitting diodes by using a multiquantum-barrier electron blocking layer. Appl. Phys. Express 3, 031002 (2010), https://doi.org/10.1143/apex.3.031002
  15. Huang, M.-F. & Lu, T.-H. Optimization of the active-layer structure for the deep-UV AlGaN light-emitting diodes. IEEE J. Quantum Electron. 42, 820–826 (2006), https://doi.org/10.1109/JQE.2006.877217
  16. Lu, L. et al. Improving performance of algan‐based deep‐ultraviolet light‐emitting diodes by inserting a higher Al‐content algan layer within the multiple quantum wells. Phys. Status Solidi A 214, 1700461 (2017), https://doi.org/10.1002/pssa.201700461
  17. Arif, R. A., Ee, Y. K. & Tansu, N. Nanostructure engineering of staggered InGaN quantum wells light emitting diodes emitting at 420–510 nm. Phys. Status Solidi A 205, 96–100 (2008), https://doi.org/10.1002/pssa.200777478
  18. Usman, M. et al. Zigzag-shaped quantum well engineering of green light-emitting diode. Superlattices Microstruct. 132, 106164, (2019) https://doi.org/10.1016/j.spmi.2019.106164
  19. Usman, M. et al. Enhanced internal quantum efficiency of bandgap-engineered green W-shaped quantum well light-emitting diode. Appl. Sci. 9, 77 (2019), https://doi.org/10.3390/app9010077
  20. Yang, G. et al. Design of deep ultraviolet light-emitting diodes with staggered AlGaN quantum wells. Physica E 62, 55–58 (2014), https://doi.org/10.1016/j.physe.2014.04.014
  21. Zhang, Y. et al. The improvement of deep-ultraviolet light-emitting diodes with gradually decreasing Al content in AlGaN electron blocking layers. Superlattices Microstruct. 82, 151–157 (2015), https://doi.org/10.1016/j.spmi.2015.02.004
  22. Li, Y. et al. Advantages of AlGaN-based 310-nm UV light-emitting diodes with Al content graded AlGaN electron blocking layers. IEEE Photonics J. 5, 8200309–8200309 (2013), https://doi.org/10.1109/JPHOT.2013.2271718
  23. Fan, X. et al. Efficiency improvements in AlGaN-based deep ultraviolet light-emitting diodes using inverted-V-shaped graded Al composition electron blocking layer. Superlattices Microstruct. 88, 467–473 (2015), https://doi.org/10.1016/j.spmi.2015.10.003
  24. Huang, J. et al. Study of deep ultraviolet light-emitting diodes with ap-AlInN/AlGaN superlattice electron-blocking layer. J. Electron. Mater. 46, 4527–4531 (2017), https://doi.org/10.1007/s11664-017-5413-0
  25. Usman, M., Jamil, T., Malik, S. & Jamal, H. Designing anti-trapezoidal electron blocking layer for the amelioration of AlGaN-based deep ultraviolet light-emitting diodes internal quantum efficiency. Optik 232, 166528 (2021). https://doi.org/10.1016/j.ijleo.2021.166528
  26. Zhang, X. et al. Efficiency improvements in AlGaN-based deep-ultraviolet light-emitting diodes with graded superlattice last quantum barrier and without electron blocking layer. J. Electron. Mater. 48, 460–466 (2019). https://doi.org/10.1007/s11664-018-6716-5
  27. Li, K., Zeng, N., Liao, F. & Yin, Y. Investigations on deep ultraviolet light-emitting diodes with quaternary AlInGaN streamlined quantum barriers for reducing polarization effect. Superlattices Microstruct. 145, 106601 (2020). https://doi.org/10.1016/j.spmi.2020.106601
  28. Shatalov, M. et al. Deep ultraviolet light-emitting diodes using quaternary AlInGaN multiple quantum wells. IEEE J. Sel. Top. Quantum Electron. 8, 302–309 (2002). https://doi.org/10.1109/2944.999185
  29. Chen, X., Wang, D. & Fan, G. Investigation of AlGaN-based deep-ultraviolet light-emitting diodes with AlInGaN/AlInGaN super-lattice electron blocking layer. J. Electron. Mater. 48, 2572–2576 (2019). https://doi.org/10.1007/s11664-019-07001-3
  30. Kim, S. J. & Kim, T. G. Numerical study of enhanced performance in InGaN light-emitting diodes with graded-composition AlGaInN barriers. J. Opt. Soc. Korea 17, 16-21 (2013) . https://doi.org/10.3807/JOSK.2013.17.1.016
  31. Adivarahan, V. et al. Ultraviolet light-emitting diodes at 340 nm using quaternary AlInGaN multiple quantum wells. Appl. Phys. Lett. 79, 4240–4242 (2001). https://doi.org/10.1063/1.1425453
  32. Chen, C. et al. Pulsed metalorganic chemical vapor deposition of quaternary AlInGaN layers and multiple quantum wells for ultraviolet light emission. Jpn. J. Appl. Phys. 41, 1924 (2002). https://doi.org/10.1143/jjap.41.1924
Go to article

Authors and Affiliations

Shahzeb Malik
1
Muhammad Usman
1
ORCID: ORCID
Masroor Hussain
2
Munaza Munsif
1
Sibghatullah Khan
1
Saad Rasheed
1
Shazma Ali
1

  1. Faculty of Engineering Sciences, Ghulam Ishaq Khan Institute of Engineering Sciences and Technology, Topi, 23460, Khyber Pakhtunkhwa, Pakistan
  2. Faculty of Computer Sciences and Engineering, Ghulam Ishaq Khan Institute of Engineering Sciences and Technology, Topi, 23460, Khyber Pakhtunkhwa, Pakistan
Download PDF Download RIS Download Bibtex

Abstract

In literature, it is known that a Light Emitting Diode (LED) could be used as a light sensor. It is also known that its emitted light spectrum and sensitivity spectrum can be partially overlapped. This work presents how commercial LEDs can be used as light emitters and simultaneously as sensors of the reflected portion of the light emitted by themselves. The realized devices present a unique characteristic: the transmitter and the receiver coincide spatially as they are the same device. This ensures the perfect overlapping between transmission and reception radiation lobes that could provide many benefits in several applications like as distance measurements or image sensors. Some simple electronic configurations that use LEDs as detectors of their own emitted light are presented. It has been also demonstrated how these LEDsTx-Rx can work as image sensors by acquiring an image of a simple test object, and how they can realize distance sensors with respect to other known techniques. Further advantages can be obtained by realizing LEDTx-Rx array in single integrated devices. With the realization of such devices, it will be also possible to experiment new constructive solutions for commonly used applications, without the need of using separate emitter and receiver.

Go to article

Authors and Affiliations

E. Vannacci
S. Granchi
M. Calzolai
E. Biagi
Download PDF Download RIS Download Bibtex

Abstract

The presented research shows that commercially available graphene on quartz modified with rhenium oxide meets the requirements for its use as a conductive and transparent anode in optoelectronic devices. The cluster growth of rhenium oxide enables an increase in the work function of graphene by 1.3 eV up to 5.2 eV, which guarantees an appropriate adjustment to the energy levels of organic semiconductors used in organic light-emitting diode devices.
Go to article

Bibliography

  1. Zou, S. J. et al. Recent advances in organic light-emitting diodes: Toward smart lighting and displays. Chem. Front. 4, 788–820 (2020). https://doi.org/10.1039/c9qm00716d
  2. Hou, S. et al. Recent advances in silver nanowires electrodes for flexible organic/perovskite light-emitting diodes. Chem. 10, 864186 (2022). https://doi.org/10.3389/fchem.2022.864186
  3. Naghdi, S., Sanchez-Arriaga, G. & Rhee, K. Y. . Tuning the work function of graphene toward application as anode and cathode. Alloys Compd. 805, 1117–1134 (2019). https://doi.org/10.1016/j.jallcom.2019.07.187
  4. Adetayo, A. E., Ahmed, T. N., Zakhidov, A. & Beall, G. W. Improvements of organic light-emitting diodes using graphene as an emerging and efficient transparent conducting electrode material. Opt. Mat. 9, 2002102 (2021). https://doi.org/10.1002/adom.202002102
  5. Krukowski, P. et al. Work function tunability of graphene with thermally evaporated rhenium heptoxide for transparent electrode applications. Eng. Mat. 22, 1900955 (2020). https://doi.org/10.1002/adem.201900955
  6. Meyer, J. et al. Metal oxide induced charge transfer doping and band alignment of graphene electrodes for efficient organic light emitting diodes. Rep. 4, 5380 (2014). https://doi.org/10.1038/srep05380
  7. Meyer, J. et al. Transition metal oxides for organic electronics: Energetics, device physics and applications. Mat. 24, 5408–5427 (2012). https://doi.org/10.1002/adma.201201630
  8. Kowalczyk, D. A. et al. Local electronic structure of stable mono-layers of α-MoO3−x grown on graphite substrate. 2D Mat. 8, 025005 (2021). https://doi.org/10.1088/2053-1583/abcf10
  9. Kowalczyk, P. J. et al. Flexible photovoltaic cells based on two-dimensional materials and their hybrids. Przeglad Elektrotechniczny 98, 117–120 (2022). (in Polish) https://doi.org/10.15199/48.2022.02.26
  10. Kowalczyk, D. A. et al. Two-dimensional crystals as a buffer layer for high work function applications: the case of monolayer MoO3. ACS Appl. Mater. Interfaces. 14, 44506–44515 (2022). https://doi.org/10.1021/acsami.2c09946
  11. Lei, Y. et al. Graphene and beyond: recent advances in two-dimensional materials synthesis, properties, and devices. ACS Nanosci. Au (2022). https://doi.org/10.1021/acsnanoscienceau.2c00017
  12. Pabianek, K. et al. Interactions of Ti and its oxides with selected surfaces: Si(100), HOPG(0001) and graphene/4H-SiC(0001). Coat. Technol. 397, 126033 (2020). https://doi.org/10.1016/j.surfcoat.2020.126033
  13. Momeni Pakdehi, D. et al. Minimum resistance anisotropy of epitaxial graphene on SiC. ACS Appl. Mater. Interfaces. 10, 6039–6045 (2018). https://doi.org/10.1021/acsami.7b18641
  14. Miao, Y. et al. Small-size graphene oxide (GO) as a hole injection layer for high-performance green phosphorescent organic light-emitting diodes. Mater. Chem. C 9, 12408–12419 (2021). https://doi.org/10.1039/d1tc02898g
  15. Chen, Y., Gong, X. L. & Gai, J. G. Progress and challenges in transfer of large-area graphene films. Sci. 3, 1500343 (2016). https://doi.org/10.1002/advs.201500343
  16. Fisichella, G. et al. Micro- and nanoscale electrical characterization of large-area graphene transferred to functional substrates. Beilstein Nanotechnol. 4, 234–242 (2013). https://doi.org/10.3762/bjnano.4.24
  17. Huet, B. & Raskin, J. P. Role of the Cu substrate in the growth of ultra-flat crack-free highly-crystalline single-layer graphene. Nanoscale 10, 21898–21909 (2018). https://doi.org/10.1039/c8nr06817h
  18. Zheng, F. et al. Critical stable length in wrinkles of two-dimensional materials. ACS Nano 14, 2137–2144 (2020). https://doi.org/10.1021/acsnano.9b08928
  19. Venables, J. A. Atomic processes in crystal growth. Sci. 299300, 798–817 (1994). https://doi.org/10.1016/0039-6028(94)90698-X
  20. Greiner, M. T. et al. The oxidation of rhenium and identification of rhenium oxides during catalytic partial oxidation of ethylene: An in-situ XPS study. Phys. Chem. 228, 521–541 (2014). https://doi.org/10.1515/zpch-2014-0002
Go to article

Authors and Affiliations

Paweł Krukowski
1
ORCID: ORCID
Michał Piskorski
1
ORCID: ORCID
Ruslana Udovytska
2
ORCID: ORCID
Dorota A. Kowalczyk
1
ORCID: ORCID
Iaroslav Lutsyk
1
ORCID: ORCID
Maciej Rogala
1
ORCID: ORCID
Paweł Dąbrowski
1
ORCID: ORCID
Witold Kozłowski
1
ORCID: ORCID
Beata Łuszczyńska
2
ORCID: ORCID
Jarosław Jung
2
ORCID: ORCID
Jacek Ulański
2
ORCID: ORCID
Krzysztof Matuszek
2
ORCID: ORCID
Aleksandra Nadolska
1
ORCID: ORCID
Przemysław Przybysz
1
ORCID: ORCID
Wojciech Ryś
1
ORCID: ORCID
Klaudia Toczek
1
ORCID: ORCID
Rafał Dunal
1
ORCID: ORCID
Patryk Krempiński
1
ORCID: ORCID
Justyna Czerwińska
1
ORCID: ORCID
Maxime Le Ster
1
ORCID: ORCID
Marcin Skulimowski
3
ORCID: ORCID
Paweł J. Kowalczyk
1
ORCID: ORCID

  1. Department of Solid State Physics (member of National Photovoltaic Laboratory, Poland), Faculty of Physics and Applied Informatics, University of Lodz, 149/153 Pomorska St., 90–236 Łódź, Poland
  2. Department of Molecular Physics (member of National Photovoltaic Laboratory, Poland), Lodz University of Technology, 116 Żeromskiego St., 90– 924 Łódź, Poland
  3. Department of Intelligent Systems, Faculty of Physics and Applied Informatics, University of Lodz, 149/152 Pomorska St., 90–236 Łódź, Poland
Download PDF Download RIS Download Bibtex

Abstract

This research paper discusses an analytical approach to designing the active region of light emitting diodes to enhance its performance. The layers in the active region were modified and the effects of changing the width of quantum well and barrier layers in a multi-quantum light emitting diode on the output power and efficiency have been investigated. Also, the ratio of the quantum well width to the B layer width was calculated and proposed in this research paper. The study is carried out on two different LED structures. In the first case, the width of the quantum well layers is kept constant while the width of the B layers is varied. In the second case, both the quantum well and B layer widths are varied. Based on the simulation results, it has been observed that the LED power efficiency increases considerably for a given quantum well to B layers width ratio without increasing the production complexity. It is also seen that for a desired power efficiency the width of quantum well should be between 0.003 µm and 0.006 µm, and the range of B width (height) should be 2.2 to 6 times the quantum well width. The proposed study is carried out on the GaN-AlGaN-based multi-quantum well LED structure, but this study can be extended to multiple combinations of the semiconductor structures.
Go to article

Bibliography

  1. Lenk, R. & Lenk, C. Practical Lighting Design with LEDs. (2nd. ed.) (John Wiley & Sons, Ltd., 2017).
  2. , S. M. & Kwok, K. Ng, Physics of Semiconductor Devices. (4th ed.) (Wiley-Interscience, 2006).
  3. Van Zeghbroeck, B. Principles Of Semiconductor Devices. (Prentice-Hall, 2006).
  4. Schulte-Römer, N., Meier, J., Söding, M. & Dannemann, E. The LED paradox: how light pollution challenges experts to reconsider sustainable lighting. Sustainability 11, 6160 (2019). https://doi.org/10.3390/su11216160
  5. Sharma, L, & Sharma, R. Optimized design of narrow spectral linewidth nonpolar m-plane InGaN/GaN micro-scale light-emitting diode. J. Opt. 49, 397–402 (2020). https://doi.org/10.1007/s12596-020-00632-4
  6. Rashidi, A. et al. High-speed nonpolar InGaN/GaN LEDs for visible-light communication. IEEE Photonics Technol. Lett. 29, 381–384 (2017). https://doi.org/10.1109/LPT.2017.2650681
  7. Shi, J. et al. III-Nitride-based cyan light-emitting diodes with GHz bandwidth for high-speed visible light communicatio. IEEE Electron. Device Lett. 37, 894–897 (2016). https://doi.org/10.1109/LED.2016.2573265
  8. Gong, M. et al. Semi-polar (20–21) InGaN/GaN multiple quantum wells grown on patterned sapphire substrate with internal quantum efficiency up to 52 percent. Appl. Phys. Express. 13, 091002 (2020). https://doi.org/10.35848/1882-0786/abac91
  9. Rouet-Leduc, B., Barros, K., Lookman, T. & Humphreys, C. J. Optimisation of GaN LEDs and the reduction of efficiency droop using active machine learning. Sci. Rep. 6, 24862 (2016). https://doi.org/10.1038/srep24862
  10. Piprek, J. Simulation-based machine learning for optoelectronic device design: perspectives, problems, and prospects. Opt. Quantum Electron. 53, 175 (2021). https://doi.org/10.1007/s11082-021-02837-8
  11. Usman, M., Munsif, M. & Abdur-Rehman, A., High internal quantum efficiency of green GaN-based light-emitting diodes by thickness-graded last well/last B and composition-graded electron blocking layer Opt. Quantum Electron. 52, 320 (2020). https://doi.org/10.1007/s11082-020-02436-z
  12. Song, K., Mohseni, M. & Taghipour, F. Application of ultraviolet light-emitting diodes (UV-LEDs) for water disinfection. Water Res. 94, 341–349 (2016). https://doi.org/10.1016/j.watres.2016.03.003
  13. Liao, Ch.-L. et al. High-speed GaN-based blue light-emitting diodes with gallium-doped ZnO current spreading layer. IEEE Electron. Device Lett. 34, 611–613 (2013). https://doi.org/10.1109/LED.2013.2252457
  14. Quan, Z. et al. High bandwidth freestanding semipolar (11–22) InGaN/GaN light-emitting diodes. IEEE Photon. J. 8, (2016). https://doi.org/10.1109/JPHOT.2016.2596245
  15. Shi, J.-W. et al. III-nitride-based cyan light-emitting diodes with GHz bandwidth for high-speed visible light communication. IEEE Electron. Device Lett. 37, 894–897 (2016). https://doi.org/10.1109/LED.2016.2573265
Go to article

Authors and Affiliations

Lokesh Sharma
1
Ritu Sharma
1

  1. Department of Electronics and Communication Engineering, Malaviya, National Institute of Technology, Jaipur, Rajasthan 302017, India
Download PDF Download RIS Download Bibtex

Abstract

The aim of this study was to determine the time-dependent effectiveness of photo-stimulation against bovine sperm cells using a multi-wavelength LED (Light Emitting Diode). Spermatological parameters were evaluated for viability, acrosome structure and motility. In addition, the effect of photo-stimulation on frozen-thawed sperm cells subjected to in vitro capacitation was evaluated in terms of changes in mitochondrial membrane potential. The study consisted of two separate experiments and a total of 32 sperm samples obtained from separate bulls were used. All sperm samples were obtained from Holstein bulls using an artificial vagina. Semen was diluted to a final concentration of 92 x 106 spermatozoa per ml in 0.25 ml straws. The sperm cells were frozen using the conventional method. Straws were kept in a 37°C water bath for 20 seconds and diluted 1:4 in phosphate buffered saline (PBS) to eliminate the potentially deleterious effect of glycerol, the main permeable cryoprotectant in the freezing medium for bull sperm. This dilution also helped in the evaluation of sperm quality parameters. In the first experiment, whereas the 15-10-15 showed no differences with the control, other treatments such as 10-10-10, 5-5-5, and 3-1-3 exhibited significantly higher percentages of viable spermatozoa at 24h. The results obtained for acrosome integrity were pretty much similar to those observed in the sperm viability assessment. In effect, while the treatment consisting of 15-10-15 had no positive effects, shorter treatments exerted a much more positive effect. The percentages of acrosome-intact spermatozoa in 2-1-2 and 1-1-1 were significantly higher than those obtained in the control. The significant differences in mitochondrial membrane potential were observed at 0, 2, 4 and 24h post-photo-stimulation in all treatments, except 15-10-15. The highest increase in the percentage of spermatozoa exhibiting high mitochondrial membrane potential was found in 10-10-10, 5-5-5 and 3-1-3 treatments. With regard to total and progressive motility, whereas 10-10-10 was the best regime, 5-5-5 and 3-1-3 treatments also had a positive effect. However, 15-10-15 appeared to have a stimulating effect upon progressive motility at 2h and 4h but later declined and showed no significant differences with regard to the control at 24h. In the second experiment, not immediately after thawing but after having been kept at room temperature for up to 24h, it was observed that there was no statistical difference in terms of viability, acrosome integrity and total/progressive motility between photostimulation and the control group. This indicates that photo- stimulation is less able to exert a beneficial effect when post-thawed sperm are not immediately stimulated. As a result it was determined that photo-stimulation at a pattern of 10-10-10, 5-5-5, 3-1-3 and, to a lesser extent 2-1-2, increases the resilience of frozen-thawed bull sperm when applied upon thawing.
Go to article

Bibliography


Abdel-Salam Z, Dessouki SH, Abdel-Salam SA, Ibrahim MA, Harith MA (2011) Green laser irradiation effects on buffalo semen. Theri-ogenology 75: 988-994.
Aitken RJ (1997) Molecular mechanisms regulating human sperm function. Mol Hum Reprod 3: 169-173.
Aitken RJ, West K M (1990) Analysis of the relationship between reactive oxygen species production and leucocyte infiltration in fractions of human semen separated on Percoll gradients. Int J Androl 13: 433-451.
Antognazza MR, Abdel Aziz I, Lodola F (2019) Use of Exo- genous and Endogenous Photomediators as Efficient ROS Modulation Tools: Results and Perspectives for Therapeutic Purposes. Oxid Med Cell Longev 2019: 2867516.
Avci P, Gupta A, Sadasivam M, Vecchio D, Pam Z, Pam N, Hamblin MR (2013) Low-level laser (light) therapy (LLLT) in skin: stimulating, healing, restoring. Semin Cutan Med Surg 32: 41-52.
Brand˜ao AC, Arruda RP, Andrade AF, Zaffalon FG, Tarrag´o OF, Visintin JA, Assumpção ME (2008) Effect of diode laser on motility, plasma and acrosomal membrane integrity, and mitochondrial membrane potential of cryopreserved stallion spermatozoa. Anim Reprod Sci 107: 309-310.
Breitbart H, Levinshal T, Cohen N, Friedmann H, Lubart R (1996) Changes in calcium transport in mammalian sperm mitochondria and plasma membrane irradiated at 633 nm (He-Ne laser). J Photochem Photobiol B 34: 117-121.
Bucak MN, Sariozkan S, Tuncer PB, Sakin F, Atessahin A, Kulaksiz R, Cevik M (2010) The effect of antioxidants on post-thawed Angora goat (Capra hircus ancryrensis) sperm parameters, lipid peroxidation and antioxidant activities. Small Rumin Res 89: 24-30.
Cohen N, Lubart R, Rubinstein S, Breitbart H (1998) Light irradiation of Mouse spermatozoa: Stimulation of in vitro fertilization and calcium signals. Photochem Photobiol 68: 407-413.
Corral-Baqués MI, Rivera MM, Rigau T, Rodríguez-Gil JE, Rigau J (2009) The effect of low-level laser irradiation on dog spermatozoa motility is dependent on laser output power. Lasers Med Sci 24: 703-713.
Cui L, Li XY, He DY, Chen L, Gong SL (2013) Study on microtexture of laser welded 5A90 aluminium-lithium alloys using electron backscattered diffraction. Sci Technol Weld 18: 204–209.
Dall Agnol MA, Nicolau RA, de Lima CJ, Munin E (2009) Comparative analysis of coherent light action (laser) versus non-coherent light (light-emitting diode) for tissue repair in diabetic rats. Lasers Med Sci 24: 909-916.
Darszon A, Treviño CL, Wood C, Galindo B, Rodríguez- -Miranda E, Acevedo JJ, Hernández-González EO, Beltrán C, Martínez-López P, Nishigaki T (2007) Ion channels in sperm motility and capacitation. Soc Reprod Fertil Suppl 65: 229-244.
de Almeida TG, Alves MB, Batissaco L, Torres MA, de Andrade AF, Mingoti RD, de Arruda RP, Celeghini EC (2019) Does low-level laser therapy on degenerated ovine testes improve post-thawed sperm characteristics? Lasers Med Sci 34: 1001-1009.
de Rezende MU, Varone BB, Martuscelli DF, Ocampos GP, Freire GM, Pinto NC, de Sousa MV (2022) Pilot study of the effect of therapeutic photobiomodulation on postoperative pain in knee arthroplasty. Braz J Anesthesiol 72: 159-161
Desan PH, Weinstein AJ, Michalak EE, Tam EM, Meesters Y, Ruiter M J, Horn E, Telner J, Iskandar H, Boivin DB, Lam RW (2007) A controlled trial of the Litebook light- -emitting diode (LED) light therapy device for treatment of Seasonal Affective Disorder (SAD). Bmc Psychiatry 7(1): 1-8.
Fekrazad E, Keyhan H, Fekrazad R, Tajik A (2014) Effect of Diode Lasers on Human Sperm Motility. Acad Res Int 5: 21-25.
Fernandes GH, de Carvalho PD, Serra AJ, Crespilho AM, Peron JP, Rossato C, Leal-Junior EC, Albertini R (2015) The effect of low-level laser irradiation on sperm motility, and integrity of the plasma membrane and acrosome in cryopreserved bovine sperm. PLoS One 10: e0121487.
Frangez HB, Frangez I, Verdenik I, Jansa V, Klun IV (2015) Photobiomodulation with light-emitting diodes improves sperm motility in men with asthenozoospermia. Lasers Med Sci 30: 235-240.
Garner DL, Johnson LA (1995) Viability assessment of mammalian sperm using SYBR-14 and propidium iodide. Biol Reprod 53: 276-284.
Huang YY, Nagata K, Tedford CE, McCarthy T, Hamblin MR (2013) Low-level laser therapy (LLLT) reduces oxidative stress in primary cortical neurons in vitro. J Biophotonics 6: 829-838.
Iaffaldano N, Meluzzi A, Manchisi A, Passarella S (2005) Improvement of stored turkey semen quality as a result of He-Ne laser irradiation. Anim Reprod Sci 85: 317-325.
Iaffaldano N, Paventi G, Pizzuto R, Di Iorio M, Bailey JL, Manchisi A, Passarella S (2016) Helium-neon Laser Irradiation of Cryopreserved Ram Sperm Enhances Cytochrome C Oxidase Activity and ATP Levels Improving Semen Quality. Theriogenology 86: 778-784.
Iaffaldano N, Rosato MP, Paventi G, Pizzuto R, Gambacorta M, Manchisi A, Passarella S (2010) The irradiation of rabbit sperm cells with He-Ne laser prevents their in vitro liquid storage dependent damage. Anim Reprod Sci 119: 123-129.
Kim CH, Ahn DC (2012) Coaxial monitoring of keyhole during Yb:YAG laser welding. Opt Laser Technol 44: 1874-1880.
Lubart R, Wollman Y, Friedmann H, Rochkind S, Laulicht I (1992) Effects of visible and near infrared lasers on cell cultures. J Photochem Photobiol B 12: 305-310.
Maia MS, Bicudo SD, Sicherle CC, Rodello L, Gallego IC (2010) Lipid peroxidation and generation of hydrogen peroxide in frozen-thawed ram semen cryopreserved in extenders with antioxidants. Anim Reprod Sci 122: 118-123.
Muiño R, Tamargo C, Hidalgo CO, Peña AI (2008) Identification of sperm subpopulations with defined motility characteristics in ejaculates from Holstein bulls: effects of cryopreservation and between-bull variation. Anim Reprod Sci 109: 27-39.
Nagy S, Jansen J, Topper EK, Gadella BM (2003) A triple- -stain flow cytometric method to assess plasma- and acrosome-membrane integri-ty of cryopreserved bovine sperm immediately after thawing in presence of egg-yolk particles. Biol Reprod 68: 1828-1835.
Ocaña-Quero JM, Gomez-Villamandos R, Moreno-Millan M, Santisteban-Valenzuela JM (1997) Biological effects of helium-neon (He-Ne) laser irradiation on acrosome reaction in bull sperm cells. J Photochem Photobiol B 40: 294-298.
Omur A, Balcı S (2020) Evaluatıon of the effects of photostimulation on freze-thawed bull sperm cells in terms of motility: preliminary as-sessment. CRYO2020 The 57th Annual Meeting Of The Society For Cryobiology. July 21-23. 97: 289-290
Omur AD, Coyan K (2016) Protective effects of the antioxidants curcumin, ellagic acid and methionine on motility, mitochondrial transmem-brane potential, plasma membrane and acrosome integrity in freeze-thawed Merino ram sperm. Vet Med 61: 10-16.
Pezo F, Zambrano F, Uribe P, Ramírez-Reveco A, Romero F, Sanchéz R (2018) LED-based red light photostimulation improves short-term response of cooled boar semen exposed to thermal stress at 37°C. Andrologia 51: e13237.
Prieto-Martínez N, Morató R, Muiño R, Hidalgo CO, Rodríguez-Gil JE, Bonet S, Yeste M (2017) Aquaglyceroporins 3 and 7 in bull spermatozoa: identification, localisation and their relationship with sperm cryotolerance. Reprod Fertil Dev 29: 1249-1259.
Rashid K, Sil PC (2015) Curcumin ameliorates testicular damage in diabetic rats by suppressing cellular stress mediated mitochondria and endoplasmic reticulum dependent apoptotic death. Biochim Biophys Acta 1852: 70-82.
Rodríguez-Gil JE (2019) Photostimulation and thermotaxis of sperm: Overview and practical implications in porcine reproduction. Theriogenology 137: 8-14.
Saltmarche AE (2008) Low level laser therapy for healing acute and chronic wounds-the extendicare experience. Int Wound J 5: 351-360.
Soares LE, Guirado MM, Berlingieri G, Ramires MC, Lyra LA, Teixeira IS, Oliveira, PC, Tateno RY, Palma LF, Campos L (2021) Intranasal photobiomodulation therapy for COVID-19-related olfactory dysfunction: a Brazilian multicenter case series. Photodiagnosis Photodyn Ther 36: 102574.
Wenbin Y, Wenzhong L, Mengzhao L, Baotian Z, Laizeng AI, Tongya L (1996) Effects of laser radiation on Saanen buck’s sperm energy metabolism. In: Proceedings of the sixth ınternational conference on goats. Beijing, China.
Wright C, Milne S, Leeson H (2014) Sperm DNA damage caused by oxidative stress: modifiable clinical, lifestyle and nutritional factors in male infertility. Rep Biomed Online 28: 684-703.
Yeste M, Codony F, Estrada E, Lleonart M, Baslasch S, Peña A, Bonet S, Rodríguez-Gil JE (2016) Specific LED-based red light photo-stimulation procedures improve overall sperm function and reproductive performance of boar ejaculates. Sci Rep 6: 22569.
You DY, Gao XD, Katayama S (2014) Review of laser welding monitoring. Sci Technol Weld Join 19: 181-201.
Go to article

Authors and Affiliations

A.D. Ömür
1 2 3

  1. Department of Reproduction and Artificial Insemination, Faculty of Veterinary Medicine, Atatürk University, 25240, Yakutiye/ Erzurum, Turkey
  2. Department of Biochemistry, Faculty of Veterinary Medicine, Atatürk University, 25240, Yakutiye/Erzurum, Turkey
  3. Department of Molecular Biology and Genetics, Faculty of Science, Atatürk University, 25240, Yakutiye/Erzurum, Turkey
Download PDF Download RIS Download Bibtex

Abstract

External light outcoupling structures provide a cost-effective and highly efficient solution for light extraction in organic light-emitting diodes. Among them, different microtextures, mainly optimized for devices with isotopically oriented emission dipoles, have been proposed as an efficient light extraction solution. In the paper, the outcoupling for a preferential orientation of emission dipoles is studied for the case of a red bottom-emitting organic light-emitting diode. Optical simulations are used to analyse the preferential orientation of dipoles in combination with three different textures, namely hexagonal array of sine-textures, three-sided pyramids, and random pyramids. It is shown that while there are minimal differences between the optimized textures, the highest external quantum efficiency of 51% is predicted by using the three-sided pyramid texture. Further improvements, by employing highly oriented dipole sources, are examined. In this case, the results show that the top outcoupling efficiencies can be achieved with the same texture shape and size, regardless of the preferred orientation of the emission dipoles. Using an optimized three-sided pyramid in combination with ideally parallel oriented dipoles, an efficiency of 62% is achievable. A detailed analysis of the optical situation inside the glass substrate, dominating external light outcoupling, is presented. Depicted results and their analysis offer a simplified further research and development of external light extraction for organic light-emitting devices with highly oriented dipole emission sources.
Go to article

Bibliography

  1. Song, J., Lee, H., Jeong, E.͏͏ G., Choi, K.͏ C. & Yoo, S. Organic light-emitting diodes: pushing toward the limits and beyond. Adv. Mater. 32, 1907539 (2020). https://doi.org/10.1002/adma.201907539
  2. Yin, Y., Ali, M. U., Xie, W., Yang, H. & Meng, H. Evolution of white organic light-emitting devices: from academic research to lighting and display applications. Mater. Chem. Front. 3, 970–1031 (2019). https://doi.org/10.1039/C9QM00042A
  3. Pode, R. Organic light emitting diode devices: An energy efficient solid state lighting for applications. Renew. Sust. Energy Rev. 133, 110043 (2020). https://doi.org/10.1016/j.rser.2020.110043
  4. Chang, Y. & Lu, Z. White organic light-emitting diodes for solid-state lighting. J. Disp. Technol. 9, 459–468 (2013). https://doi.org/10.1109/JDT.2013.2248698
  5. Reineke, S., Thomschke, M., Lüssem, B. & Leo, K. White organic light-emitting diodes: Status and perspective. Rev. Mod. Phys. 85, 1245–1293 (2013). https://doi.org/10.1103/RevModPhys.85.1245
  6. Hong, G. et al. A brief history of OLEDS—emitter development and industry milestones. Adv. Mater. 33, 2005630 (2021). https://doi.org/10.1002/adma.202005630
  7. Adachi, C., Xie, G., Reineke, S. & Zysman-Colman, E. Editorial: recent advances in thermally activated delayed fluorescence materials. Front. Chem. 8, 625910 (2020). https://doi.org/10.3389/fchem.2020.625910
  8. Forrest, S. R., Bradley, D. D. C. & Thompson, M. E. Measuring the efficiency of organic light-emitting devices. Adv. Mater. 15, 1043–1048 (2003). https://doi.org/10.1002/adma.200302151
  9. Furno, M., Meerheim, R., Hofmann, S., Lüssem, B. & Leo, K. Efficiency and rate of spontaneous emission in organic electroluminescent devices. Phys. Rev. B 85, 115205 (2012). https://doi.org/10.1103/PhysRevB.85.115205
  10. Meerheim, R., Furno, M., Hofmann, S., Lüssem, B. & Leo, K. Quantification of energy loss mechanisms in organic light-emitting diodes. Appl. Phys. Lett. 97, 253305 (2010). https://doi.org/10.1063/1.3527936
  11. Salehi, A., Fu, X., Shin, D.-H. & So, F. Recent advances in OLED optical design. Adv. Funct. Mater. 29, 1808803 (2019). https://doi.org/10.1002/adfm.201808803
  12. Gather, M.C. & Reineke, S. Recent advances in light outcoupling from white organic light-emitting diodes. J. Photonics Energy 5, 057607 (2015). https://doi.org/10.1117/1.JPE.5.057607
  13. Möller, S. & Forrest, S. R. Improved light out-coupling in organic light emitting diodes employing ordered microlens arrays. J. Appl. Phys. 91, 3324–3327 (2002). https://doi.org/10.1063/1.1435422
  14. Greiner, H. Light extraction from Organic Light Emitting Diode substrates: simulation and experiment. Jpn. J. Appl. Phys. 46, 4125 (2007). https://doi.org/10.1143/JJAP.46.4125
  15. Bae, H., Kim, J.͏͏ S. & Hong, C. Simulation for light extraction efficiency of OLEDs with spheroidal microlenses in hexagonal array. Opt. Commun. 415, 168–176 (2018). https://doi.org/10.1016/j.optcom.2018.01.044
  16. Zhou, J.-G., Hua, X.-C., Huang, C.-C., Sun, Q. & Fung, M.-K. Ideal microlens array based on polystyrene microspheres for light extraction in organic light-emitting diodes. Org. Electron. 69, 348–353 (2019). https://doi.org/10.1016/j.orgel.2019.03.051
  17. Zhai, G., Zhu, W., Huang, L., Yi, C. & Ding, K. Enhanced light extraction from green organic light-emitting diodes by attaching a high-haze random-bowls textured optical film. J. Phys. D: Appl. Phys. 53, 435101 (2020). https://doi.org/10.1088/1361-6463/ab9fc3
  18. Yen, J.-H., Wang, Y.-J., Hsieh, C.-A., Chen, Y.-C. & Chen, L.-Y. Enhanced light extraction from organic light-emitting devices through non-covalent or covalent polyimide–silica light scattering hybrid films. J. Mater. Chem. C 8, 4102–4111 (2020). https://doi.org/10.1039/C9TC06449D
  19. Gasonoo, A. et al. Outcoupling efficiency enhancement of a bottom-emitting OLED with a visible perylene film. Opt. Express 28, 26724–26732 (2020). https://doi.org/10.1364/OE.397789
  20. Song, J. et al. Lensfree OLEDs with over 50% external quantum efficiency via external scattering and horizontally oriented emitters. Nat. Commun. 9, 3207 (2018). https://doi.org/10.1038/s41467-018-05671-x
  21. Tu, T. T. K. et al. Enhancement of light extraction from Organic Light-Emitting Diodes by SiO2 nanoparticle-embedded phase separated PAA/PI polymer blends. Mol. Cryst. Liq. Cryst. 686, 55–62 (2019). https://doi.org/10.1080/15421406.2019.1648036
  22. Kovačič, M. et al. Coupled optical modeling for optimization of Organic Light-Emitting Diodes with external outcoupling structures. ACS Photonics 5, 422–430 (2018). https://doi.org/10.1021/acsphotonics.7b00874
  23. Kovačič, M. et al. Combined optical model for micro-structured organic light emitting diodes. Inf. MIDEM 46, 167–275 (2017).
  24. Kovačič, M., Jošt, M., Bokalič, M. & Lipovšek, B. Sklopljeno optično modeliranje sodobnih optoelektronskih gradnikov. Elektrotehniski Vestn. 87, 223–234 (2020). http://www.dlib.si/stream/URN:NBN:SI:doc-2H1046ZZ/1ab9d4a8-6aab-40c3-abb5-9d826ff65672/PDF (in Slovene)
  25. Kovačič, M. et al. Analysis and optimization of light outcoupling in OLEDs with external hierarchical textures. Opt. Express 29, 23701–23716 (2021). https://doi.org/10.1364/OE.428021
  26. Lipovšek, B., Krč, J. & Topič, M. Microtextured light-management foils and their optimization for planar organic and perovskite solar cells. IEEE J. Photovolt. 8, 783–792 (2018). https://doi.org/10.1109/JPHOTOV.2018.2810844
  27. Jošt, M. et al. Efficient light management by textured nanoimprinted layers for perovskite solar cells. ACS Photonics 4, 1232–1239 (2017). https://doi.org/10.1021/acsphotonics.7b00138
  28. Schmidt, T. D. et al. Emitter orientation as a key parameter in Organic Light-Emitting Diodes. Phys. Rev. Appl. 8, 037001 (2017). https://doi.org/10.1103/PhysRevApplied.8.037001
  29. Hofmann, A., Schmid, M. & Brütting, W. The many facets of molecular orientation in organic optoelectronics. Adv. Opt. Mater. 9, 2101004 (2021). https://doi.org/10.1002/adom.202101004
  30. Kim, K.-H. & Kim, J.-J. Origin and control of orientation of phosphorescent and TADF dyes for high‐efficiency OLEDs. Adv. Mater. 30, 1705600 (2018). https://doi.org/10.1002/adma.201705600
  31. Yokoyama, D. Molecular orientation in small-molecule organic light-emitting diodes. J. Mater. Chem. 21, 19187–19202 (2011). https://doi.org/10.1039/C1JM13417E
  32. Schwab, T. et al. Highly efficient color stable inverted white top-emitting OLEDs with ultra-thin wetting layer top electrodes. Adv. Opt. Mater. 1, 707–713 (2013) https://doi.org/10.1002/adom.201300241
  33. Schwab, T., Schubert, S., Müller-Meskamp, L., Leo, K. & Gather, M. C. Eliminating micro-cavity effects in white top-emitting OLEDs by ultra-thin metallic top electrodes. Adv. Opt. Mater. 1, 921–925 (2013). https://doi.org/10.1002/adom.201300392
  34. Zhang, W. et al. Rough glass by 3d texture transfer for silicon thin film solar cells. Phys. Status Solidi C 7, 1120–1123 (2010). https://doi.org/10.1002/pssc.200982773
  35. Escarré, J., Söderström, K., Battaglia, C., Haug, F.-J. & Ballif, C. High fidelity transfer of nanometric random textures by UV embossing for thin film solar cells applications. Sol. Energy Mater. Sol. Cells 95, 881–886 (2011). https://doi.org/10.1016/j.solmat.2010.11.010
  36. Meier, M. et al. UV nanoimprint for the replication of etched ZnO:Al textures applied in thin-film silicon solar cells. Prog. Photovolt. Res. Appl. 22, 1226–1236 (2014). https://doi.org/10.1002/pip.2382
  37. Xiao, L., Su, S.-J., Agata, Y., Lan, H. & Kido, J. Nearly 100% internal quantum efficiency in an organic blue-light electro-phosphorescent device using a weak electron transporting material with a wide energy gap. Adv. Mater. 21, 1271–1274 (2009). https://doi.org/10.1002/adma.200802034
  38. Dias, F. B. et al. Triplet harvesting with 100% efficiency by way of thermally activated delayed fluorescence in charge transfer OLED emitters. Adv. Mater. 25, 3707–3714 (2013). https://doi.org/10.1002/adma.201300753
  39. Zhang, Q. et al. Nearly 100% internal quantum efficiency in undoped electroluminescent devices employing pure organic emitters. Adv. Mater. 27, 2096–2100 (2015). https://doi.org/10.1002/adma.201405474
  40. Neyts, K. A. Simulation of light emission from thin-film microcavities. J. Opt. Soc. Am. A 15, 962–971 (1998). https://doi.org/10.1364/JOSAA.15.000962
  41. Kovačič, M. Effect of dipole position and orientation on light extraction for red OLEDs on periodically corrugated substrate – FEM simulations study. Inf. MIDEM 51, 73–84 (2021). https://doi.org/10.33180/InfMIDEM2021.105
  42. Lüder, H. & Gerken, M. FDTD modelling of nanostructured OLEDs: analysis of simulation parameters for accurate radiation patterns. Opt. Quantum Electron. 51, 139 (2019). https://doi.org/10.1007/s11082-019-1838-4
  43. Lipovšek, B., Krč, J. & Topič, M. Optical model for thin-film photovoltaic devices with large surface textures at the front side. Inf. MIDEM 41, 264–271 (2011). http://www.midem-drustvo.si/Journal%20papers/MIDEM_41%282011%294p264.pdf
  44. MATLAB – MathWorks (2022). https://www.mathworks.com/products/matlab.html
Go to article

Authors and Affiliations

Milan Kovačič
1
ORCID: ORCID

  1. Faculty of Electrical Engineering, University of Ljubljana, Tržaška cesta 25, 1000 Ljubljana, Slovenia
Download PDF Download RIS Download Bibtex

Abstract

Peak-to-average power ratio reduction techniques for visible light communication broadcasting systems are designed, simulated, and evaluated in this work. The proposed techniques are based on merging non-linear companding techniques with precoding techniques. This work aims to nominate an optimum novel scheme combining the low peak-to-average power ratio with the acceptable bit error rate performance. Asymmetrically clipped optical orthogonal frequency division multiplexing with the low peak-to-average power ratio performance becomes more attractive to real-life visible light communication applications due to non-linearity elimination. The proposed schemes are compared and an optimum choice is nominated. Comparing the presented work and related literature reviews for peak-to-average power ratio reduction techniques are held to ensure the proposed schemes validity and effectiveness.
Go to article

Bibliography

  1. Mohammed, N. A. & Elkarim, M. A. Exploring the effect of diffuse reflection on indoor localization systems based on RSSI-VLC. Opt. Express 23, 20297 (2015). https://doi.org/10.1364/oe.23.020297
  2. Grobe, L. et al. High-speed visible light communication systems. IEEE Commun. Mag. 51, 60–66 (2013). https://doi.org/10.1109/MCOM.2013.6685758
  3. Mohammed, N. A. & Mansi, A. H. Performance enhancement and capacity enlargement for a DWDM-PON system utilizing an optimized cross seeding rayleigh backscattering design. Appl. Sci. 9, 4520 (2019). https://doi.org/10.3390/app9214520
  4. Mohammed, A. N., Okasha, M. N. & Aly, M. H. A wideband apodized FBG dispersion compensator in long haul WDM systems. J. Optoelectron. Adv. Mater. 18, 475–479 (2016).
  5. Mohammed, N. A. & El Serafy, H. O. Ultra-sensitive quasi-distributed temperature sensor based on an apodized fiber Bragg grating. Appl. Opt. 57, 273 (2018). https://doi.org/10.1364/ao.57.000273
  6. Mohammed, N. A. & Okasha, N. M. Single- and dual-band dispersion compensation unit using apodized chirped fiber Bragg grating. J. Comput. Electron. 17, 349–360 (2018). https://doi.org/10.1007/s10825-017-1096-2
  7. Shehata, M. I. & Mohammed, N. A. Design and optimization of novel two inputs optical logic gates (NOT, AND, OR and NOR) based on single commercial TW-SOA operating at 40 Gbit/s. Opt. Quantum Electron. 48, 1–16 (2016). https://doi.org/10.1007/s11082-016-0602-2
  8. Mohammed, N. A., Hamed, M. M., Khalaf, A. A. M., Alsayyari, A. & El-Rabaie, S. High-sensitivity ultra-quality factor and remarkable compact blood components biomedical sensor based on nanocavity coupled photonic crystal. Results Phys. 14, 102478 (2019). https://doi.org/10.1016/j.rinp.2019.102478
  9. Mohammed, N. A., Abo Elnasr, H. S. & Aly, M. Performance evaluation and enhancement of 2×2 Ti: LiNbO 3 Mach Zehnder interferometer switch at 1.3 µm and 1.55 µm. Open Electr. Electron. Eng. J. 6, 36–49 (2012). https://doi:10.2174/1874129001206010036
  10. Mostafa, T. S., Mohammed, N. A. & El-Rabaie, E. S. M. Ultra-h igh bit rate all-optical AND/OR logic gates based on photonic crystal with multi-wavelength simultaneous operation. J. Mod. Opt. 66, 1005–1016 (2019). https://doi.org/10.1080/09500340.2019.1598587
  11. Mohammed, N. A., Abo Elnasr, H. S. & Aly, M. H. Analysis and design of an electro-optic 2 × 2 switch using Ti: KNbO3 as a waveguide based on MZI at 1.3 μ m. Opt. Quantum Electron. 46, 295–304 (2014). https://doi.org/10.1007/s11082-013-9760-7
  12. Mostafa, T. S., Mohammed, N. A. & El-Rabaie, E. S. M. Ultracompact ultrafast-switching-speed all-optical 4×2 encoder based on photonic crystal. J. Comput. Electron. 18, 279–292 (2019). https://doi.org/10.1007/s10825-018-1278-6
  13. Jovicic, A., Li, J. & Richardson, T. Visible light communication: opportunities, challenges and the path to market. IEEE Commun. Mag. 51, 26–32 (2013).
  14. Rehman, S. U., Ullah, S., Chong, P. H. J., Yongchareon, S. & Komosny, D. Visible light communication: A system perspective–Overview and challenges. Sensors 19, 1153 (2019). https://doi.org/10.3390/s19051153
  15. Matheus, L. E. M., Vieira, A. B., Vieira, L. F. M., Vieira, M. A. M. & Gnawali, O. Visible light communication: concepts, applications and challenges. IEEE Commun. Surv. Tutorials 21, 3204 (2019). https://doi.org/10.1109/COMST.2019.2913348
  16. Rust, I. C. & Asada, H. H. A dual-use visible light approach to integrated communication and localization of underwater robots with application to non-destructive nuclear reactor inspection. In IEEE International Conference on Robotics Automation (ICRA2012) 2445–2450 (2012). https://doi.org/10.1109/ICRA.2012.6224718
  17. Mohammed, N. A., Badawi, K. A., Khalaf, A. A. M. & El-Rabaie, S. Dimming control schemes combining IEEE 802.15.7 and SC-LPPM modulation schemes with an adaptive M-QAM OFDM for indoor LOS VLC systems. Opto-Electron. Rev. 28, 203–212 (2020). https://doi.org/10.24425/opelre.2020.135259
  18. Mohammed, N. A. & Badawi, K. A. Design and performance evaluation for a non-line of sight VLC dimmable system based on SC-LPPM. IEEE Access 6, 52393–52405 (2018). https://doi.org/10.1109/ACCESS.2018.2869878
  19. Shoreh, M.H., Fallahpour, A. & Salehi, J.A. Design concepts and performance analysis of multicarrier CDMA for indoor visible light communications. J. Opt. Commun. Netw. 7, 554–562 (2015). https://doi.org/10.1364/JOCN.7.000554
  20. Mossaad, M. S. A., Hranilovic, S. & Lampe, L. Visible light commu¬nications using OFDM and multiple LEDs. IEEE Trans. Commun. 63, 4304–4313 (2015). https://doi.org/10.1109/TCOMM.2015.2469285
  21. Badawi, K. A., Mohammed, N. A. & Aly, M. H. Exploring BER performance of a SC-LPPM based LOS-VLC system with distinc-tive lighting. J. Optoelectron. Adv. Mater. 20, 290–301 (2018)
  22. Mohammed, N. A, Abaza, M. R. & Aly, M. H. Improved perfor-mance of M-ary PPM in different free-space optical channels due to reed solomon code using APD. J. Sci. Eng. Res. 2, 82–85 (2011)
  23. Tsonev, D., Sinanovic, S. & Haas, H. Novel unipolar orthogonal frequency division multiplexing (U-OFDM) for optical wireless. in IEEE Vehicular Technology Conference (2012). https://doi.org/10.1109/VETECS.2012.6240060
  24. Islam, R., Choudhury, P. & Islam, M. A. Analysis of DCO-OFDM and flip-OFDM for IM/DD optical-wireless system. in 8th International Confference on Electrical and Computer Engineering: Advancing Technology for a Better Tomorrow (ICECE 2014) 32–35 (2015). https://doi.org/10.1109/ICECE.2014.7026929
  25. Hu, W. W. PAPR reduction in DCO-OFDM visible light communication systems using optimized odd and even sequences combination. IEEE Photonics J. 11, 1024 (2019). https://doi.org/10.1109/JPHOT.2019.2892871
  26. Dissanayake, S. D., Panta, K. & Armstrong, J. A novel technique to simultaneously transmit ACO-OFDM and DCO-OFDM in IM/DD systems. in IEEE Globecom Workshops (GC Wkshps 2011) 782–786 (2011). https://doi.org/10.1109/GLOCOMW.2011.6162561
  27. Dissanayake, S. D., Member, S., Armstrong, J. & Member, S. Comparison of ACO-OFDM, DCO-OFDM and ADO-OFDM in IM/DD Systems. J. Light. Technol. 31, 1063–1072 (2013).
  28. Dang, J., Zhang, Z. & Wu, L. Improving the power efficiency of enhanced unipolar OFDM for optical wireless communication. Electron. Lett. 51, 1681–1683 (2015). https://doi.org/10.1049/el.2015.2024
  29. Lam, E., Wilson, S. K., Elgala, H. & Little, T. D. C. Spectrally and energy efficient OFDM (SEE-OFDM) for intensity modulated optical wireless systems. The Cornell University,1–26 (2015). https://arxiv.org/abs/1510.08172v1
  30. Lowery, A. J. Comparisons of spectrally-enhanced asymmetrically-clipped optical OFDM systems. Opt. Express 24, 3950 (2016). https://doi.org/10.1364/oe.24.003950
  31. Elgala, H. & Little, T. Polar-based OFDM and SC-FDE links toward energy-efficient Gbps transmission under IM-DD optical system constraints. J. Opt. Commun. Netw. 7, A277–A284 (2015). https://doi.org/10.1364/JOCN.7.00A277
  32. Zhang, T. et al. A performance improvement and cost-efficient ACO-OFDM scheme for visible light communications. Opt. Commun. 402, 199–205 (2017). https://doi.org/10.1016/j.optcom.2017.06.015
  33. Kubjana, M. D., Shongwe, T. & Ndjiongue, A. R. Hybrid PLC-VLC based on ACO-OFDM. in 2018 IEEE International Conference On Intelligent And Innovative Computing Applications (ICONIC 2018) 364–368 (2018)
  34. Shawky, E., El-Shimy, M. A., Shalaby, H. M. H., Mokhtar, A. & El-Badawy, E.-S. A. Kalman Filtering for VLC Channel Estimation of ACO-OFDM Systems. in 2018 ASIA IEEE Communications And Photonics Conference (ACP) (2018).
  35. Niaz, M. T., Imdad, F., Ejaz, W. & Kim, H. S. Compressed sensing-based channel estimation for ACO-OFDM visible light communica¬tions in 5G systems. Eurasip J. Wirel. Commun. Netw. 2016, 268 (2016). https://doi.org/10.1186/s13638-016-0774-2
  36. Hao, L., Wang, D., Cheng, W., Li, J. & Ma, A. Performance enhancement of ACO-OFDM-based VLC systems using a hybrid autoencoder scheme. Opt. Commun. 442, 110–116 (2019). https://doi.org/10.1016/j.optcom.2019.03.013
  37. Vappangi, S. & Vakamulla, V. M. Channel estimation in ACO-OFDM employing different transforms for VLC. AEU-Int. J. Electron. Commun. 84, 111–122 (2018). https://doi.org/10.1016/j.aeue.2017.11.016
  38. Vappangi, S. & Vakamulla, V. M. A low PAPR multicarrier and multiple access schemes for VLC. Opt. Commun. 425, 121–132 (2018). https://doi.org/10.1016/j.optcom.2018.04.064
  39. Mounir, M., Tarrad, I. F. & Youssef, M. I. Performance evaluation of different precoding matrices for PAPR reduction in OFDM systems. Internet Technol. Lett. 1, e70 (2018). https://doi.org/10.1002/itl2.70
  40. Hu, S., Wu, G., Wen, Q., Xiao, Y. & Li, S. Nonlinearity reduction by tone reservation with null subcarriers for WiMAX system. Wirel. Pers. Commun. 54, 289–305 (2010). https://doi.org/10.1007/s11277-009-9726-z
  41. Zhang, X., Wang, Q., Zhang, R., Chen, S. & Hanzo, L. Performance analysis of layered ACO-OFDM. IEEE Access 5, 18366–18381 (2017). https://doi.org/10.1109/ACCESS.2017.2748057
  42. Anoh, K., Tanriover, C., Adebisi, B. & Hammoudeh, M. A new approach to iterative clipping and filtering papr reduction scheme for ofdm systems. IEEE Access 6, 17533–17544 (2017). https://doi.org/10.1109/ACCESS.2017.2751620
  43. Madhavi, D. & Ramesh Patnaik, M. Implementation of non linear companding technique for reducing PAPR of OFDM. Mater. Today Proc. 5, 870–877 (2018). https://doi.org/10.1016/j.matpr.2017.11.159
  44. Shaheen, I. A. A., Zekry, A., Newagy, F. & Ibrahim, R. Absolute exponential companding to reduced PAPR for FBMC/OQAM. in 2017 Palestinian International Confference on Information and Communication Technology (PICICT 2017) 60–65 (2017). https://doi.org/10.1109/PICICT.2017.17
  45. Yang, Y., Zeng, Z., Feng, S. & Guo, C. A simple OFDM scheme for VLC systems based on μ-law mapping. IEEE Photonics Technol. Lett. 28, 641–644 (2016). https://doi.org/10.1109/LPT.2015.2503481
  46. Yadav, A.K. & Prajapati, Y. K. PAPR minimization of clipped ofdm signals using tangent rooting companding technique. Wirel. Pers. Commun. 105, 1435–1447 (2019). https://doi.org/10.1007/s11277-019-06151-1
  47. Hasan, M. M. VLM precoded SLM technique for PAPR reduction in OFDM systems. Wirel. Pers. Commun. 73, 791–801 (2013). https://doi.org/10.1007/s11277-013-1217-6
  48. Freag, H. et al. PAPR reduction in VLC-OFDM system using CPM combined with PTS method. Int. J. Comput. Digit. Syst. 6, 127–132 (2017). https://doi.org/10.12785/ijcds/060304
  49. Xiao, Y. et al. PAPR reduction based on chaos combined with SLM technique in optical OFDM IM/DD system. Opt. Fiber Technol. 21, 81–86 (2015). https://doi.org/10.1016/j.yofte.2014.08.014
  50. Wang, Z., Wang, Z. & Chen, S. Encrypted image transmission in OFDM-based VLC systems using symbol scrambling and chaotic DFT precoding. Opt. Commun. 431, 229–237 (2019). https://doi.org/10.1016/j.optcom.2018.09.045
  51. Sharifi, A. A. PAPR reduction of optical OFDM signals in visible light communications. ICT Express 5, 202–205 (2019). https://doi.org/10.1016/j.icte.2019.01.001
  52. Ghassemlooy, Z., Ma, C. & Guo, S. PAPR reduction scheme for ACO-OFDM based visible light communication systems. Opt. Commun. 383, 75–80 (2017). https://doi.org/10.1016/j.optcom.2016.07.073
  53. Abd Elkarim, M., Elsherbini, M. M., AbdelKader, H. M. & Aly, M. H. Exploring the effect of LED nonlinearity on the performance of layered ACO-OFDM. Appl. Opt. 59, 7343–7351 (2020). https://doi.org/10.1364/AO.397559
  54. Kumar Singh, V. & Dalal, U. D. Abatement of PAPR for ACO-OFDM deployed in VLC systems by frequency modulation of the baseband signal forming a constant envelope. Opt. Commun. 393, 258–266 (2017). https://doi.org/10.1016/j.optcom.2017.02.065
  55. Wang, Z.-P., Xiao, J.-N., Li, F. & Chen, L. Hadamard precoding for PAPR reduction in optical direct detection OFDM systems. Optoelectron. Lett. 7, 363–366 (2011). https://doi.org/10.1007/s11801-011-1044-5
  56. Wang, Z.-P. & Zhang, S.-Z. Grouped DCT precoding for PAPR reduction in optical direct detection OFDM systems. Optoelectron. Lett. 9, 213–216 (2013). https://doi.org/10.1007/s11801-013-3021-7
  57. Ali Sharifi, A. Discrete Hartley matrix transform precoding-based OFDM system to reduce the high PAPR. ICT Express 5, 100–103 (2019). https://doi.org/10.1016/j.icte.2018.07.001
  58. El-Nabawy, M. M., Aboul-Dahab, M. A. & El-Barbary, K. PAPR Reduction of OFDM signal by using combined hadamard and modified meu-law companding techniques. Int. J. Comput. Networks Commun. 6, 71 (2014).
  59. Reddy, Y. S., Reddy, M. V. K., Ayyanna, K. & Ravikumar, G. V. The effect of NCT techniques on SC-FDMA system in presence of HPA. Int. J. Res. Computer Commun. Technol. 3, 844–848 (2014).
  60. Abd El-Rahman, A. F. et al. Companding techniques for SC-FDMA and sensor network applications. Int. J. Electron. Lett. 8, 241–255 (2020). https://doi.org/10.1080/21681724.2019.1600051
  61. Azim, A. W., Le Guennec, Y. & Maury, G. Decision-directed iterative methods for PAPR reduction in optical wireless OFDM systems. Opt. Commun. 389, 318–330 (2017). https://doi.org/10.1016/j.optcom.2016.12.026
  62. Guan, R. et al. Enhanced subcarrier-index modulation-based asymmetrically clipped optical OFDM using even subcarriers. Opt. Commun. 402, 600–605 (2017). https://doi.org/10.1016/j.optcom.2017.06.032
  63. Hu, W. W. SLM-based ACO-OFDM VLC system with low-complexity minimum amplitude difference decoder. Electron. Lett. 54, 144–146 (2018). https://doi.org/10.1049/el.2017.3158
  64. Offiong, F. B., Sinanovic, S. & Popoola, W. O. On PAPR reduction in pilot-assisted optical OFDM communication systems. IEEE Access 5, 8916–8929 (2017). https://doi.org/10.1109/ACCESS.2017.2700877
  65. Xu, W., Wu, M., Zhang, H., You, X. & Zhao, C. ACO-OFDM-specified recoverable upper clipping with efficient detection for optical wireless communications. IEEE Photonics J. 6, (2014). https://doi.org/10.1109/JPHOT.2014.2352643
Go to article

Authors and Affiliations

Nazmi A. Mohammed
1
Mohamed M. Elnabawy
2 3
Ashraf A. M. Khalaf
2
ORCID: ORCID

  1. Photonic Research Lab, Electrical Engineering Department, College of Engineering, Shaqra University, Dawadmi 11961, Kingdom of Saudi Arabia
  2. Electrical Engineering Department, Faculty of Engineering, Minia University, Minia, Egypt, P.O. Box 61111, Minia, Egypt
  3. Electronics and Communication Department, Modern Academy for Engineering and Technology, Maadi 11585, Cairo, Egypt
Download PDF Download RIS Download Bibtex

Abstract

In this study, the temperature influence on the spectral responsivity of a Light Emitting Diode (LED) used as a photoreceptor, combined to light source spectrum is correlated to electrical characteristics in order to propose an alternative method to estimate LED junction temperature, regardless of the absolute illumination intensity and based on the direct correlation between the integral of the product of two optical spectra and the photo-generated currents. A laboratory test bench for experimental optical measurements has been set in order to enable any characterizing of photoelectric devices in terms of spectral behaviour, in a wavelength range placed between 400–1000 nm, and of current-voltage characteristics as function of temperature by using two different illumination sources. The temperature is analysed in a range from 5°C up to 85°C, so as to evaluate thermal variation effects on the sensor performance. The photo-generated current of two LEDs with different peak wavelengths has been studied. Research has observed and mathematically analysed what follows: since the photo-generated current strictly depends on the combination between the spectral response of the photoreceptor and the lighting source response, it becomes possible to estimate indirectly the junction temperature of the LEDs by considering the ratio between the photogenerated currents obtained by using two different illumination sources. Such results may for one thing increase knowledge in the fields where LEDs are used as photo-detectors for many applications and for another, they could be extended to generic photodetectors, thus providing useful information in photovoltaic field, for instance.

Go to article

Authors and Affiliations

E. Vannacci
S. Granchi
M. Cecchi
M. Calzolai
E. Mazzi
E. Biagi

This page uses 'cookies'. Learn more