Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 2
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

This article deals with the analysis of the fractal dimension of streamers propagating in mineral oil, under lightning impulse voltage, using the box counting method; the method and technique of calculation are described therein. In the considered experimental conditions, the average velocities of recorded streamers are of 2.4 km/s and 1.8 km/s for positive and negative streamers, respectively; these velocities correspond to the 2nd mode of streamers propagation. It is shown that the streamers present the fractal dimension D ; and the higher D is the bushier are the streamers (i.e. with high branch density). The positive streamers can have higher D than the negative ones, if they are bushier.
Go to article

Bibliography

[1] Abu Shehab W.F., Ali S.A., Alsharari M.I., Lightning protection for power transformers of Aqaba Thermal Power Station, Archives of Electrical Engineering, vol. 69, no. 3, pp. 645–660 (2020), DOI: 10.24425/aee.2020.133923.
[2] Devins J.C., Rzad S.J., Schwabe R.J., Breakdown and pre-breakdown phenomena in liquids, Journal of Applied Physiscs, vol. 52, pp. 4531–4545 (1981), DOI: 10.1063/1.329327.
[3] Beroual A., Tobazeon R., Prebreakdown phenomena in liquid dielectrics, IEEE Transactions on Electrical Insulation, vol. 21, no. 4, pp. 613–627 (1986), DOI: 10.1109/TEI.1986.348967.
[4] Hebner R.E., Measurements of Electrical Breakdown in Liquids, in The Liquid State and its Electrical Properties, vol. B193, Plenum Press (1988).
[5] Badent A., Kist K., Schwabe R.J., Voltage Dependence of Prebreakdown Phenomena in Insulating Oil, Conference Record of the IEEE International Symposium on Electrical Insulation, Pittsburg, PA, USA, pp. 414–417 (1994).
[6] Beroual A., Zahn M., Badent A., Kist K., Schwabe A.J., Yamashita H., Yamazawa K., Danikas M., Chadband W.G., Torshin Y., Propagation and Structure of Streamers in Liquid Dielectrics, IEEE Electrical Insulation Magazine, vol. 14, no. 2, pp. 6–17 (1998), DOI: 10.1109/57.662781.
[7] Lesaint O., Prebreakdown phenomena in liquids: propagation “modes” and basic physical properties, Journal of Physics D-Applied Physics, vol. 49, no. 14, 22 (2016), DOI: 10.1088/0022- 3727/49/14/144001.
[8] Rozga P., Beroual A., Przybylek P., Jaroszewski M., Strzelecki K., A Review on Synthetic Ester Liquids for Transformer Applications, Energies, vol. 13, 6429 (2020), DOI: 10.3390/en13236429.
[9] CIGRE Group TB 856, Dielectric performance on insulating liquids for transformers,WG D1.70 TF3 (2021).
[10] Mandelbrot B.B., Fractals, Form, Chance and Dimension, Freeman, San Francisco, USA (1977), DOI: 10.1016/0012-8252(79)90075-8.
[11] Djemai Z., Beroual A., Fractal Dimension of Discharges Propagation on Insulating Interfaces, Archives of Electrical Engineering, vol. 3, pp. 249–254 (1998).
[12] Boroujeni F.M., Maleki A., Fractal Analysis of Noise Signals of Sampo and John Deere Combine Harvesters in Operational Conditions, Archives of Acoustics, vol. 44, no. 1, pp. 89–98 (2019), DOI: 10.24425/aoa.2019.126355.
[13] Ficker T., Electrostatic discharges and multi-fractal analysis of their Lichtenberg figures, Journal of Physiscs D: Applied Physics, vol. 32, pp. 219–226 (1999).
[14] Sawada Y., Ohta S., Yamazaki M.Y., Honjo H., Self-similarity and a phase transtion-like behaviour of a random growing structure governed by a non-euilibrium parameter, Physics Review A, vol. 26, 3557 (1982), DOI: 10.1103/PhysRevA.26.3557.
[15] Niemeyer L., Pietronero L., Wiesmann H.J., Fractal dimension of dielectric breakdown, Physical Review Letters, vol. 33, pp. 1033–1036 (1984), DOI: 10.1103/PhysRevLett.52.1033.
[16] Wiesmann H.J., Zeller H.R.A., A fractal model of dielectric breakdown and prebreakdown in solid dielectrics, Journal of Applied Physics, vol. 60, pp. 1770–1773 (1986), DOI: 10.1063/1.337219.
[17] Fujimori S., Electric Discharge and Fractals, Japan Journal of Applied Physics, vol. 24, no. 9, pp 1198–1203 (1985).
[18] Kudo K., Fractal analysis of electrical trees, IEEE Transactions on Dielectrics and Electrical Insulation, vol. 5, no. 5, pp. 713–727 (1998), DOI: 10.1109/94.729694.
[19] Kebbabi L., Beroual A., Fractal analysis of creeping discharge patterns propagating at solid/liquid interfaces: Influence of the nature and geometry of solid insulators, Journal of Physics D: Applied Physics, vol. 39, pp. 177–183 (2006), DOI: 10.1088/0022-3727/39/1/026.
[20] Lichtenberg G.C., Nova methodo naturam ac motum fluidi electrici investigandi, Commentatio Prior, Novi Commentarti Soc. Reg. Sc. Gottingensis, vol. 8, pp. 168–180 (1778).
[21] Beroual A., Dang V-H., Fractal analysis of lightning impulse surface discharges propagating over pressboard immersed in mineral and vegetable oils, IEEE Transacions on Dielectrics and Electrical Insulation, vol. 20, pp. 1402–1408 (2013), DOI: 10.1109/TDEI.2013.6571462.
[22] Beroual A., Coulibaly M.-L., Relationship between the Fractal Dimension of Creeping Discharges Propagating at Solid/Gas Interfaces and the Characteristics Parameters of Interfaces, Interanational Review on Electrical Engineering, vol. 9, no. 2, pp. 460–465 (2014).
[23] Rozga P., Influenece of paper insulation on the prebrakdown phenomena in mineral oil under lightning impulse, IEEE Transactions on Dielectrics and Electrical Insulation, vol. 18, no. 3, pp. 720–727 (2011), DOI: 10.1109/TDEI.2011.5931058.
[24] Rozga P., Jayasree T., Mohan Rao U., Fofana I., Picher P., Prebreakdown and Breakdown Phenomena in Ester Dielectric Liquids, in Alternative Liquids Dielectrics for High Voltage Transformer Insulation Systems: Performance Analysis and Applications, Wiley-IEEE Press, pp. 147–183 (2021), DOI: 10.1002/9781119800194.ch6.
[25] Rozga P., Rapp K.J., Stanek M., Lightning Properties of Selected Insulating Synthetic Esters and Mineral Oil in Point-to-Sphere Electrode System, IEEE Transactions on Dielectrics and Electrical Insulation, vol. 25, pp. 1699–1705 (2018), DOI: 10.1109/TDEI.2018.007069.
[26] Lundgaard L.E., Linhjell D., Berg G., Streamer/leaders from a metallic particle between parallel plane electrodes in transformer oil, IEEE Transactions on Dielectrics and Electrical Insulation, vol. 8, pp. 1054–1063 (2001), DOI: 10.1109/94.971465.
Go to article

Authors and Affiliations

Viet-Hung Dang
1
ORCID: ORCID
Abderrahmane Beroual
2
ORCID: ORCID
Pawel Rozga
3
ORCID: ORCID

  1. Electric Power University, Vietnam
  2. University of Lyon, Ecole Centrale de Lyon, France
  3. Lodz University of Technology, Poland
Download PDF Download RIS Download Bibtex

Abstract

The aim of this paper is to compare three different methods of analysis of results of lightning impulse breakdown voltage measurements of solid materials such as insulating pressboard. These three methods are the series method, the step method and the up-and-down method which are applied to withstand voltage estimation commonly in high voltage engineering. To obtain the data needed for the analysis a series of experimental studies was carried out. It included studies of mineral oil and natural ester impregnating 1 mm of thick cellulose-based pressboard. In order to show the distribution of breakdown voltage the Weibull distribution was additionally applied in data analysis. The results were also assessed from the viewpoint of dielectric liquid used for impregnation. The studies carried out showed that series and step methods give comparable results opposite to the up-and-down method. The latest overstates the results for mineral oil impregnated pressboard and understates for natural ester impregnated pressboard when juxtaposing them with the rest of the methods applied. In addition, there is lack of possibility to assess the withstand voltage for the up-and-down method directly from the vector of random variable. It is possible only as a result of a specially developed equation which always arouses doubt. From the methods applied it seems that the step method can be a great substitution for the series method as intuitive, fast in application and limiting the number of samples in solid insulation material testing.
Go to article

Bibliography

[1] Liu, Q.,Wang, Z. D., & Perrot, F. (2009). Impulse breakdown voltages of ester-based transformer oils determined by using different test methods. IEEE Conference on Electrical Insulation and Dielectric Phenomena, 608–612. https://doi.org/10.1109/CEIDP.2009.5377741
[2] Rozga, P. (2016). Streamer propagation in a non-uniform electric field under lightning impulse in short gaps insulated with natural ester and mineral oil. Bulletin of the Polish Academy of Sciences: Technical Science, 64(1), 171–179. https://doi.org/10.1515/bpasts-2016-0019
[3] Rozga, P. (2016). Using the three-parameter Weibull distribution in assessment of threshold strength of pressboard impregnated by different liquid dielectrics. IET Science, Measurement & Technology, 10(6), 665–670. https://doi.org/10.1049/iet-smt.2016.0061
[4] Aniserowicz, K. (2019). Analytical calculations of surges caused by direct lightning strike to underground intrusion detection system. Bulletin of the Polish Academy of Sciences: Technical Science, 67(2), 263–269. https://doi.org/10.24425/bpas.2019.128118
[5] Mosinski, F. (1995). Metody statystyczne w technice wysokich napięć. Wydawnictwo Politechniki Łódzkiej. (in Polish)
[6] Vibholm, S., & Thyregod, P. (1988). A study of the up-and-down method for non-normal distribution functions. IEEE Transactions on Electrical Insulation, 23(3), 357–364. https://doi.org/10.1109/14.2375
[7] Rozga, P. (2019). Lightning strength of gas, liquid and solid insulation – experience formthe laboratory tests. The International Conference on Power Transformers “Transformer’19”, 199–212.
[8] Khaled, U., & Beroual, A. (2020). Lightning impulse breakdown voltage of synthetic and natural ester liquids-based Fe3O4, Al2O3 and SiO2 nanofluids. Alexandria Engineering Journal, 59(5), 3709–3713. https://doi.org/10.1016/j.aej.2020.06.025
[9] Zhang, Q., You, H., Guo, C., Qin, Y., Ma, J., &Wen, T. (2016) Experimental research of dispersion of SF6 discharge breakdown voltage under lighting impulse. High Voltage Engineering, 42(11), 3415– 3420.
[10] Zhang, Y., Xie, S., Jiang, X., Ye, L., Zhang, Ch., Sun, P., Mu, Z., & Sima, W. (2019). Study on consistency of failure probability characteristics of oil-paper insulation under different impulse voltages. Proceedings of the 21st International Symposium on High Voltage Engineering, 1192–1206. https://doi.org/10.1007/978-3-030-31676-1_111
[11] Cousineau, D. (2009). Fitting the three-parameter Weibull distribution: review and evaluation of existing and new methods. IEEE Transactions on Dielectrics and Electrical Insulation, 16(1), 281– 288. https://doi.org/10.1109/TDEI.2009.4784578
[12] European Standards. (2014). Electric strength of insulating materials – Test methods – Part 3: Additional requirements for 1,2/50 μs impulse tests (IEC 60243-3: 2014).
[13] Witos, F., Opilski, Z., Szerszen, G., & Setkiewicz, M. (2019). The 8AE-PD computer measurement system for registration and analysis of acoustic emission signals generated by partial discharges in oil power transformers. Metrology and Measurement Systems, 26(2), 403–418. https://doi.org/10.24425/mms.2019.128355
[14] Shen, Z., Wang, F., Wang, Z., Li, J. (2021). A critical review of plant-based insulating fluids for transformer: 30 years of development. Renewable and Sustainable Energy Reviews, 41, 110783. https://doi.org/10.1016/j.rser.2021.110783
[15] Liu, Q., & Wang, Z. D. (2013) Breakdown and withstand strengths of ester transformer liquids in a quasi-uniform field under impulse voltages. IEEE Transactions on Dielectrics and Electrical Insulation, 20(2), 571–579. https://doi.org/10.1109/TDEI.2013.6508761
[16] Mohan Rao, U., Fofana, I., Beroual, A., Rozga, P., Pompili, M., Calcara, L., & Rapp, K. J. (2020). A review on pre-breakdown phenomena in ester fluids: Prepared by the international study group of IEEE DEIS liquid dielectrics technical committee. IEEE Transactions on Dielectrics and Electrical Insulation, 27(5), 1546–1560. https://doi.org/10.1109/TDEI.2020.008765
[17] Dixon,W. J. (1965). The Up-and-Down method for small samples. Journal of the American Statistical Association, 60, 967–978.
[18] Malska,W., & Mazur, D. (2017). Analiza wpływu prędkosci wiatru na generację mocy na przykładzie farmy wiatrowej. Przegląd Elektrotechniczny, 93(4), 54–57 https://doi.org/10.15199/48.2017.04.14
[19] Kalbfleisch, J. D., & Prentice, R. L. (2002). The statistical analysis of failure time data (2nd ed.). J. Wiley. https://doi.org/10.1002/9781118032985
[20] De Haan, L., & Ferreira, A. (2007). Extreme value theory: an introduction. Springer Science & Business Media. https://doi.org/10.1007/0-387-34471-3
[21] Chmura, L., Morshuis, P. H. F., Smit, J. J., & Janssen, A. (2015). Life-data analysis for condition assessment of high-voltage assets. IEEE Electrical Insulation Magazine, 31(5), 20–25. https://doi.org/10.1109/MEI.2015.7214443
[22] Cargill. (2018). https://www.cargill.com/bioindustrial/fr3-fluid/fr3-fluid-technical-details [23] Nynas. (20210). Nytro Taurus (IEC 60296) Ed. 5 – Standard Grade. https://www.nynas.com/en/product-areas/transformer-oils/oils/nytro-taurus/
[24] Rozga P., Beroual A., Przybylek P., Jaroszewski M., & Strzelecki K. (2020). A review on synthetic ester liquids for transformer applications. Energies, 13(23), 6429. https://doi.org/10.3390/en13236429
[25] European Standards. (2011). Power transformers – Part 1: General (IEC 60076-1:2011)
Go to article

Authors and Affiliations

Artur Klarecki
1 2
Paweł Rózga
1
Filip Stuchała
1

  1. Lodz University of Technology, Institute of Electrical Power Engineering, Stefanowskiego 18/22, 90-924 Lodz, Poland
  2. Lodz University of Technology, Interdisciplinary Doctoral School, Zeromskiego 116, 90-924 Lodz, Poland

This page uses 'cookies'. Learn more