Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 2
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

In the article the effects of backfilling an underground, flexible pipeline, using natural materials (ground backfill) and modified materials, so called Lightweight Backfilling Materials (LBMs) were analyzed. These materials, thanks their lower density, have a positive effect on reducing the loads on the underground pipeline and, consequently, reducing deformations and stresses in its wall. LBMs include lightweight expanded clay aggregates, recycled tire chips used directly in the trench or mixed with the soil, foam concrete, foam glass (granules or plates), and expanded polystyrene, embedded in the ground in the form of blocks. The assessment of the effects of modifying the backfill of the underground pipeline was carried out by means of multi-variant numerical analysis in which models of the pipe-soil system in a plane strain state (2D model) were tested. In these models PEHD pipes were represented, with differential of their diameter (DN315, DN600) and stiffness (SDR), as well as trenches of various shapes (trench with vertical walls and with sloping walls). In the numerical calculations, two variants of trench filling were analyzed: full filling with soil and filling with selected LBMs (expanded clay aggregates, expanded polystyrene, tire chips mixed with soil) in layers separated in the backfill. The results of numerical calculations for particular variants of the models were analyzed in terms of the distribution of vertical displacements and stresses in the soil and pipe deformation. The received pipe deflections and circumferential stresses in their wall were related to the permissible values for PEHD pipes.
Go to article

Authors and Affiliations

Barbara Kliszczewicz
1
ORCID: ORCID

  1. Silesian University of Technology, Faculty of Civil Engineering, Akademicka 5,44-100 Gliwice, Poland
Download PDF Download RIS Download Bibtex

Abstract

Waste tyres are among the largest and most problematic sources of waste today, due to the large volume produced and their long-lasting decomposition and resistance to water and extreme temperatures. Since 2000 in Europe the EU Landfill Directive has forbidden the disposal of waste tyres in a landfill. Since then waste tyre derived products (TDP), including whole tyres, tyre bales, shreds, chips, and crumb rubber, have been widely used also in civil engineering applications. The baling is nowadays the best way for the product recycling of waste tyres. Waste tyre bales have considerable potential for use in road applications, particularly where their low density, permeability and ease of handling give them an advantage. Road applications include but are not limited to: embankments construction, slope stabilization and repair (landslides), road foundations over soft ground, backfill material for retaining walls and gravity retaining structures (gabion-type). Several case studies, showing the opportunities to use waste tyre bales in road construction, are presented and illustrated in the paper preceded by providing the engineering properties of waste tyre bales, used within the road structures constructed worldwide. The article also describes the first world application of abutment backfill from the tyre bales in a road bridge, realized in Poland.
Go to article

Bibliography


[1] P.J. Bosscher, T.B. Edil, S. Kuraoka, “Design of highway embankments using tire chips”, Journal of Geotechnical and Geoenvironmental Engineering, 123: pp. 295–304, 1997.
[2] J.H. Lee, R. Salgado, A. Bernal, C.W. Lovell, “Shredded tires and rubber-sand as lightweight backfill”, Journal of Geotechnical and Geoenvironmental Engineering, 125: pp. 132–141, 1999. https://doi.org/10.1061/(asce)1090-0241(1999)125:2(132).
[3] R.K. Mittal, G. Gill, “Sustainable application of waste tire chips and geogrid for improving load carrying capacity of granular soils”, Journal of Cleaner Production, 200: pp. 542–551, 2018. https://doi.org/https://doi.org/10.1016/j.jclepro.2018.07.287.
[4] A. Mahgoub, H.E. Naggar, “Coupled TDA-geocell stress-bridging system for buried corrugated metal pipes”, Journal of Geotechnical and Geoenvironmental Engineering, 146: July, 2020. https://doi.org/https://doi.org/10.1016/j.compgeo.2020.103761.
[5] J.D. Simm, M.G. Winter, S. Waite, “Design and specification of tyre bales in construction”, Proceedings of the Institution of Civil Engineers – Waste and Resource Management, 161: pp. 67–76, 2008. https://doi.org/10.1680/warm.2008.161.2.67.
[6] M.G. Winter, J.M. Reid, P.I.J. Griffiths, “Tyre bales in construction: case studies”, Report PPR 045. TRL Limited, Crowthorne, UK, 2005.
[7] PAS (Publicly Available Specification), “Specification for production of tyre bales for use in construction”, PAS 108. London, UK, 2007.
[8] A. Duda, M. Kida, S. Ziembowicz, P. Koszelnik, “Application of material from used car tyres in geotechnics – an environmental impact analysis”, PeerJ 8:e9546, 2020. https://doi.org/10.7717/peerj.9546
[9] M. Gualtieri, M. Andrioletti, C. Vismara, M. Milani, M. Camatini, “Toxicity of tire debris leachates”, Environment International, 31: pp. 723–730, 2005. https://doi.org/10.1016/j.envint.2005.02.001
[10] P. Hennebert, S. Lambert, F. Fouillen, B. Charrasse, “Assessing the environmental impact of shredded tires as embankment fill material”, Canadian Geotechnical Journal, 51: pp. 469–478, 2014. https://doi.org/10.1139/cgj-2013-0194.
[11] L. Liu, G. Cai, J. Zhang, X. Liu, K. Liu, “Evaluation of engineering properties and environmental effect of recycled waste tire-sand/soil in geotechnical engineering: A compressive review”, Renewable and Sustainable Energy Reviews, 126: pp. 109–831, 2020. https://doi.org/https://doi.org/10.1016/j.rser.2020.109831.
[12] K. Sonti, S. Senadheera. P. W. Jayawickrama, P. T. Nash, D. D. Gransberg, “Evaluate the uses for scrap tires in transportation facilities”. Research Study No 0-1808, Centre for Multidisciplinary Research in Transportation. Texas Tech University, Lubbock, TX, USA, 2000.
[13] I.F. Hodgson, S.P. Beales, M.J. Curd, “Use of tyre bales as lightweight fill for the A421 improvements scheme near Bedford, UK”, Engineering Geology Special Publications, 26: pp. 101–108, 2012. https://doi.org/10.1144/EGSP26.12.
[14] H. Harri, “Tyre bales form part of Finnish Road”, World Highways, 14: March, 18, 2005.
[15] M.G. Winter, G.R.A. Watts, P.E. Johnson, “Tyre bales in construction”. Report PPR 080. TRL Limited, Crowthorne, UK, 2006.
[16] W. Prikryl, R. Williammee, M.G. Winter, “Slope failure repair using tyre bales at Interstate Highway 20, Tarrant County, Texas, USA”, Quarterly Journal of Engineering Geology and Hydrogeology, 38: pp. 377–386, 2005. https://doi.org/10.1144/1470-9236/04-065.
[17] M.G. Winter, “Road foundation construction using lightweight tyre bales”, Proceedings of the 18th ICSMGE, Paris, pp. 3275–3278, 2013.
[18] C. Mackenzie, T. Saarenketo, “The B871 tyre bale project. The use of recycled tyre bales in a lightweight road embankment over peat”, Research report. Roadscanners, Rovaniemi, Finland, 2003.
[19] P. Bandini, A. T. Hanson, F. P. Castorena, S. Ahmed, “Use of tire bales for erosion control projects in New Mexico”, ASCE Geotechnical Special Publication 179: Characterization, Monitoring, and Modeling of Geosystems, pp. 638–645, New Orleans, LA, USA, 2008.
[20] A. Duda, D. Sobala, “Initial research on recycled tyre bales for road infrastructure applications”, SSP - Journal of Civil Engineering, 12: pp. 55–62, 2017. https://doi.org/10.1515/sspjce-2017-0019
[21] A. Duda, T. Siwowski, “Pressure evaluation of bridge abutment backfill made of waste tyre bales and shreds: experimental and numerical study”, Transportation Geotechnics, 24: pp. 100–366, 2020. https://doi.org/10.1016/j.trgeo.2020.100366.
[22] A. Duda, T. Siwowski, “Experimental investigation and first application of lightweight abutment backfill made of used tyre bales”, Proceedings of CEE 2019. Lecture Notes in Civil Engineering, 47: pp. 66–73, 2020. https://doi.org/10.1007/978-3-030-27011-7_9
[23] B. Freilich, J.G. Zornberg, “Mechanical properties of tire bales for highway applications”. Report No. FHWA/TX-10/0-5517-1, Center for Transportation Research. University of Texas, Austin, TX, USA, 2009.
Go to article

Authors and Affiliations

Aleksander Duda
1
ORCID: ORCID
Tomasz Siwowski
1
ORCID: ORCID

  1. Rzeszow University of Technology, Faculty of Civil Engineering, Environment and Architecture, Al. Powstanców Warszawy 12, 35-959 Rzeszów, Poland

This page uses 'cookies'. Learn more