Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Type

Search results

Number of results: 3
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

We investigated the antioxidant defense mechanism, metal uptake and lipid peroxidation (LPO) levels at different leaf positions in Mentha piperita L. grown in Mn2+-deficient and control conditions. Under manganese deficiency the activity of superoxide dismutase (SOD), catalase (CAT) and guaiacol peroxidase (GuaPOX) and the content of ascorbate, chlorophyll, and carotenoid under Mn2+ deficiency were significantly lower than in the control for all leaf positions. SOD activity correlated positively with Mn2+ uptake. Fe2+ uptake was inhibited by Mn2+ deficiency. During early stages of Mn2+ deficiency, M. piperita leaves showed relatively more antioxidant activity and lower LPO. Towards the final stages of the treatment period, comparatively lower SOD, CAT and GuaPOX activity and higher LPO levels accelerated the senescence process.

Go to article

Authors and Affiliations

Nilgün Candan
Leman Tarhan
Download PDF Download RIS Download Bibtex

Abstract

The main cause of sperm chromatin damage is oxidative stress related to embryo development failure and adult infertility in mammals and also avian. Oxidative stress results in lipid peroxidation (LPO) causing cell damage. Lipid peroxidation is the oxidation of polyunsaturated fatty acids (PUFAs) in biological systems and causes changes in the physical structure and characteristics of the cell membrane. Due to the high amounts of PUFAs in the avian sperm membrane, its sperm seem susceptible to pe-roxidative damage and is a substantial factor in the fertilization capacity of sperm. The most commonly used methods for measuring LPO or its by-products, such as malondialdehyde (MDA) and 4-hydroksy-2-nonenal (4-HNE), in bird semen are based on the colorimetric method TBARS (thiobarbituric acid reactive substances) and on the use of a fluorescence probe (CC 11-BODIPY 581/591) as a marker to evaluate membrane lipid peroxidation. This review aims first to introduce LPO in avian semen and its effects on avian sperm and second to summarize the commonly applied methods of evaluating LPO and its damage in fresh and stored avian semen.
Go to article

Bibliography

  1. Agarwal A, Makker K, Sharma R (2008) Clinical Relevance of Oxidative Stress in Male Factor Infertility: An Update. Am J Reprod Immunol 59: 2-11.
  2. Agarwal A, Prabakaran S A, Said T M (2005) Prevention of Oxidative Stress Injury to Sperm. J Androl 26: 654-660.
  3. Agarwal A, Saleh RA, Bedaiwy MA (2003) Role of reactive oxygen species in the pathophysiology of human reproduction. Fert Steril 79: 829-843.
  4. Agarwal A, Tvrda E, Sharma R (2014) Relationship amongst teratozoospermia, seminal oxidative stress and male infertility. Reprod Biol Endocrinol 12: 45.
  5. Ahmadi A, Ng S-C (1999) Fertilizing ability of DNA-damaged spermatozoa. J Exp Zool 284: 696-704.
  6. Aitken RJ, Baker MA (2002) Reactive oxygen species generation by human spermatozoa: a continuing enigma. Int J Androl 25: 191-194.
  7. Aitken RJ, Buckingham DW, Carreras A, Irvine DS (1996) Superoxide dismutase in human sperm suspensions: Relationship with cellular composition, oxidative stress, and sperm function. Free Radic Biol Med 21: 495-504.
  8. Aitken RJ, Clarkson JS, Fishel S (1989) Generation of Reactive Oxygen Species, Lipid Peroxidation, and Human Sperm Function. Biol Reprod 41: 183-197.
  9. Aitken RJ, Harkiss D, Buckingham DW (1993) Analysis of lipid peroxidation mechanisms in human spermatozoa. Mol Reprod Dev 35: 302-315.
  10. Aitken RJ, Wingate JK, De Iuliis GN, McLaughlin EA (2007) Analysis of lipid peroxidation in human spermatozoa using BODIPY C11. Mol Hum Reprod 13: 203-211.
  11. Almeida J, Ball BA (2005) Effect of alpha-tocopherol and tocopherol succinate on lipid peroxidation in equine spermatozoa. Anim Reprod Sci 87: 321-337.
  12. Alvarez JG, Storey BT (1982) Spontaneous Lipid Peroxidation in Rabbit Epididymal Spermatozoa: Its Effect on Sperm Motility. Biol Reprod 27: 1102-1108.
  13. Amini MR, Kohram H, Zare-Shahaneh A, Zhandi M, Sharideh H, Nabi MM (2015) The effects of different levels of catalase and superoxide dismutase in modified Beltsville extender on rooster post-thawed sperm quality. Cryobiology 70: 226-232.
  14. Bailey JL, Lessard C, Jacques J, Brèque C, Dobrinski I, Zeng W, Galantino-Homer HL (2008) Cryopreservation of boar semen and its future importance to the industry. Theriogenology 70: 1251-1259.
  15. Ball BA, Vo AT, Baumber J (2001) Generation of reactive oxygen species by equine spermatozoa. Am J Vet Res 62: 508-515.
  16. Barrera G, Pizzimenti S, Dianzani MU (2008) Lipid peroxidation: control of cell proliferation, cell differentiation and cell death. Mol Aspects Med 29: 1-8.
  17. Baumber J, Ball B A, Gravance C G, Medina V, Davies‐ -Morel MC (2000) The Effect of Reactive Oxygen Species on Equine Sperm Motility, Viability, Acrosomal Integrity, Mitochondrial Membrane Potential, and Membrane Lipid Peroxidation. J Androl 21: 895-902.
  18. Blesbois E, Grasseau I, Blum J (1993) Effects of vitamin E on fowl semen storage at 4°C. Theriogenology 39: 771-779.
  19. Blesbois E, Grasseau I, Hermier D (1999) Changes in lipid content of fowl spermatozoa after liquid storage at 2 to 5°C. Theriogenology 52: 325-334.
  20. Blesbois E, Grasseau I, Seigneurin F (2005) Membrane fluidity and the ability of domestic bird spermatozoa to survive cryopreservation. Reproduction 129: 371-378.
  21. Blesbois E, Lessire M, Grasseau I, Hallouis JM, Hermier D (1997) Effect of Dietary Fat on the Fatty Acid Composition and Fertilizing Ability of Fowl Semen. Biol Reprod 56: 1216-1220.
  22. Bréque C, Surai P, Brillard J-P (2003) Roles of antioxidants on prolonged storage of avian spermatozoa in vivo and in vitro. Mol Reprod Dev 66: 314-323.
  23. Brouwers JF, Gadella BM (2003) In situ detection and localization of lipid peroxidation in individual bovine sperm cells. Free Radic Biol Med 35: 1382-1391.
  24. Brouwers JF, Silva PF, Gadella BM (2005) New assays for detection and localization of endogenous lipid peroxidation products in living boar sperm after BTS dilution or after freeze–thawing. Theriogenology 63: 458-469.
  25. Cecil H, Bakst M (1993) In Vitro Lipid Peroxidation of Turkey Spermatozoa. Poult Sci 72: 1370-1378.
  26. Cerolini S, Zaniboni L, Maldjian A, Gliozzi T (2006) Effect of docosahexaenoic acid and α-tocopherol enrichment in chicken sperm on semen quality, sperm lipid composition and susceptibility to peroxidation. Theriogenology 66: 877-886.
  27. Chatterjee S, Gagnon C (2001) Production of reactive oxygen species by spermatozoa undergoing cooling, freezing, and thawing. Mol Reprod Dev 59: 451-458.
  28. Davies KJ (1987) Protein damage and degradation by oxygen radicals. I. general aspects. J Biol Chem 262: 9895-9901.
  29. de Lamirande D, Gagnon C (1993) A positive role for the superoxide anion in triggering hyperactivation and capacitation of human spermatozoa. Int J Androl 16: 21-25.
  30. de Lamirande E, Jiang H, Zini A, Kodama H, Gagnon C (1997) Reactive oxygen species and sperm physiology. Rev Reprod 2: 48-54.
  31. Donoghue A, Wishart G (2000) Storage of poultry semen. Anim Reprod Sci 62: 213-232.
  32. Douard V, Hermier D, Magistrini M, Blesbois E (2003) Reproductive period affects lipid composition and quality of fresh and stored spermatozoa in Turkeys. Theriogenology 59: 753-764.
  33. Douard V, Hermier D, Magistrini M, Labbé C, Blesbois E (2004) Impact of changes in composition of storage medium on lipid content and quality of turkey spermatozoa. Theriogenology 61: 1-13.
  34. Drummen GP, Van Liebergen LC, Op den Kamp JA, Post JA (2002) C11-BODIPY581/591, an oxidation-sensitive fluorescent lipid peroxidation probe: (micro)spectroscopic characterization and validation of methodology. Free Radic Biol Med 33: 473-490.
  35. Dutta S, Majzoub A, Agarwal A (2019) Oxidative stress and sperm function: A systematic review on evaluation and management. Arab J Urol 17: 87-97.
  36. Erdelmeier I, Gérard-Monnier D, Yadan J-C, Chaudière J (1998) Reactions of N-Methyl-2-phenylindole with Malondialdehyde and 4-Hydroxyalkenals. Mechanistic Aspects of the Colorimetric Assay of Lipid Peroxidation. Chem Res Toxicol 11: 1184-1194.
  37. Eslami M, Zadeh Hashem E, Ghaniei A, Sayyah-Atashbeig H (2018) Evaluation of linoleic acid on lipid peroxidative/ /antioxidative parameters, motility and viability of rooster spermatozoa during cold storage. Cell Tissue Bank 19: 799-807.
  38. Esterbauer H, Schaur RJ, Zollner H (1991) Chemistry and biochemistry of 4-hydroxynonenal, malonaldehyde and related aldehydes. Free Radic Biol Med 11: 81-128.
  39. Evenson DP, Wixon R (2006) Clinical aspects of sperm DNA fragmentation detection and male infertility. Theriogenology 65: 979-991.
  40. Fattah A, Sharafi M, Masoudi R, Shahverdi A, Esmaeili V (2017) L-carnitine is a survival factor for chilled storage of rooster semen for a long time. Cryobiology 74: 13-18.
  41. Fattah A, Sharafi M, Masoudi R, Shahverdi A, Esmaeili V, Najafi A (2017) L -Carnitine in rooster semen cryopreservation: Flow cytometric, biochemical and motion findings for frozen-thawed sperm. Cryobiology 74: 148-153.
  42. Fujihara N, Howarth B (1978) Lipid Peroxidation in Fowl Spermatozoa. Poult Sci 57: 1766-1768.
  43. Fujihara N, Koga O (1984) Prevention of the production of lipid peroxide in rooster spermatozoa. Anim Reprod Sci 7: 385-390.
  44. Gaschler MM, Stockwell BR (2017) Lipid peroxidation in cell death. Biochem Biophys Res Commun 482: 419-425.
  45. Ghaniei A, Eslami M, Zadeh Hashem E, Rezapour R, Talebi A (2019) Quercetin attenuates H2O2‐induced toxicity of rooster semen during liquid storage at 4°C. J Anim Physiol Anim Nutr103: 713-722.
  46. Guthrie H, Welch G, Long J (2008) Mitochondrial function and reactive oxygen species action in relation to boar motility. Theriogenology 70: 1209-1215.
  47. Gutteridge JM (1995) Lipid peroxidation and antioxidants as biomarkers of tissue damage. Clinical Chemistry 41: 1819-1828.
  48. Halliwell B, Chirico S (1993) Lipid peroxidation: its mechanism, measurement, and significance. Am J Clin Nutr 57 (5 Suppl): 715S-725S.
  49. Halliwell B, Gutteridge J (1984) Lipid peroxidation, oxygen radicals, cell damage, and antioxidant therapy. Lancet 1: 1396-1397.
  50. Hamilton TR, de Castro LS, Delgado J de C, De Assis PM, Siqueira AFP, Mendes CM, Goissis MD, Muiño-Blanco T, Cebrián-Pérez JÁ, Nichi M, Visintin JA, D’Ávila Assumpção ME (2016) Induced lipid peroxidation in ram sperm: semen profile, DNA fragmentation and antioxidant status. Reproduction 151: 379-390.
  51. Higuchi Y (2004) Glutathione depletion-induced chromosomal DNA fragmentation associated with apoptosis and necrosis. J Cell Mol Med 8: 455-464.
  52. Holt WV (2000) Basic aspects of frozen storage of semen. Anim Reprod Sci 62: 3-22.
  53. Izanloo H, Soleimanzadeh A, Bucak MN, Imani M, Zhandi M (2021) The effects of varying concentrations of glutathione and trehalose in improving microscopic and oxidative stress parameters in Turkey semen during liquid storage at 5°C. Cryobiology 101: 12-19.
  54. Kelso KA, Cerolini S, Noble RC, Sparks NHC, Speake BK (1996) Lipid and antioxidant changes in semen of broiler fowl from 25 to 60 weeks of age. Reproduction 106: 201-206.
  55. Long JA (2006) Avian Semen Cryopreservation: What Are the Biological Challenges? Poult Sci 85: 232-236.
  56. Long JA, Kramer M (2003) Effect of vitamin E on lipid peroxidation and fertility after artificial insemination with liquid-stored turkey semen. Poult Sci 82: 1802-1807.
  57. Łukaszewicz E (1988) Studies on the Diluents for cock’s Semen Storage in the Light of Laboratory Estimation and Fertility Rates. Zeszt Nauk AR we Wrocławiu 168: 43-59.
  58. Lushchak VI (2011) Environmentally induced oxidative stress in aquatic animals. Aquat Toxicol 101: 13-30.
  59. Lushchak VI (2014) Free radicals, reactive oxygen species, oxidative stress and its classification. Chem Biol Interact 224: 164-175.
  60. Masoudi R, Asadzadeh N, Sharafi M (2021) Effects of freezing extender supplementation with mitochondria-targeted antioxidant Mito-TEMPO on frozen-thawed rooster semen quality and reproductive performance. Anim Reprod Sci 225: 106671.
  61. Mavi GK, Dubey PP, Cheema RS (2020) Association of antioxidant defense system with semen attributes vis a vis fertility in exotic and indigenous chicken breeds. Theriogenology 144: 158-163.
  62. Mehaisen GM, Partyka A, Ligocka Z, Niżański W (2020) Cryoprotective effect of melatonin supplementation on post-thawed rooster sperm quality. Anim Reprod Sci 212: 106238.
  63. Moghbeli M, Kohram H, Zare-Shahaneh A, Zhandi M, Sharafi M, Nabi MM, Zahedi V, Sharideh H (2016) Are the optimum levels of the catalase and vitamin E in rooster semen extender after freezing-thawing influenced by sperm concentration? Cryobiology 72: 264-268.
  64. Neild DM, Brouwers JF, Colenbrander B, Agüero A, Gadella BM (2005) Lipid peroxide formation in relation to membrane stability of fresh and frozen thawed stallion spermatozoa. Mol Reprod Dev 72: 230-238.
  65. Ohkawa H, Ohishi N, Yagi K (1979) Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal Biochem 95: 351-358.
  66. Park NC, Park HJ, Lee KM, Shin DG (2003) Free Radical Scavenger Effect of Rebamipide in Sperm Processing and Cryopreservation. Asian J Androl 5: 195-201.
  67. Partyka A, Jerysz A, Pokorny P (2007) Lipid Peroxidation in Fresh and Stored Semen of Green-Legged Partridge. EJPAU 10: 08.
  68. Partyka A, Łukaszewicz E, Niżański W (2012a) Lipid peroxidation and antioxidant enzymes activity in avian semen. Anim Reprod Sci 134: 184-190.
  69. Partyka A, Łukaszewicz E, Niżański W (2012b) Effect of cryopreservation on sperm parameters, lipid peroxidation and antioxidant enzymes activity in fowl semen. Theriogenology 77: 1497-1504.
  70. Partyka A, Łukaszewicz E, Niżański W, Twardoń J (2011) Detection of lipid peroxidation in frozen-thawed avian spermatozoa using C11-BODIPY(581/591). Theriogenology 75: 1623-1629.
  71. Partyka A, Niżański W (2021) Supplementation of Avian Semen Extenders with Antioxidants to Improve Semen Quality – Is It an Effective Strategy? Antioxidants (Basel) 10:1927.
  72. Partyka A, Niżański W, Łukaszewicz E (2010) Evaluation of fresh and frozen-thawed fowl semen by flow cytometry. Theriogenology 74: 1019-1027.
  73. Peris SI, Bilodeau J-F, Dufour M, Bailey JL (2007) Impact of cryopreservation and reactive oxygen species on DNA integrity, lipid peroxidation, and functional parameters in ram sperm. Mol Reprod Dev 74: 878-892.
  74. Rad HM, Eslami M, Ghanie A (2016) Palmitoleate enhances quality of rooster semen during chilled storage. Anim Reprod Sci 165: 38-45.
  75. Rosato MP, Centoducati G, Santacroce MP, Iaffaldano N (2012) Effects of lycopene on in vitro quality and lipid peroxidation in refrigerated and cryopreserved turkey spermatozoa. Br Poult Sci 53: 545-552.
  76. Rui BR, Shibuya FY, Kawaoku AJ, Losano JD, Angrimani DS, Dalmazzo A, Nichi M, Pereira RJ (2017) Impact of induced levels of specific free radicals and malondialdehyde on chicken semen quality and fertility. Theriogenology 90: 11-19.
  77. Sakkas D, Alvarez JG (2010) Sperm DNA fragmentation: mechanisms of origin, impact on reproductive outcome, and analysis. Fertil Steril 93: 1027-1036.
  78. Salehi M, Mahdavi AH, Sharafi M, Shahverdi A (2020) Cryopreservation of rooster semen: Evidence for the epigenetic modifications of thawed sperm. Theriogenology 142: 15-25.
  79. Simões R, Feitosa WB, Siqueira AF, Nichi M, Paula-Lopes FF, Marques MG, Peres MA, Barnabe VH, Visintin JA, Assumpção ME (2013) Influence of bovine sperm DNA fragmentation and oxidative stress on early embryo in vitro development outcome. Reproduction 146: 433-441.
  80. Słowińska M, Liszewska E, Judycka S, Konopka M, Ciereszko A (2018) Mitochondrial membrane potential and reactive oxygen species in liquid stored and cryopreserved turkey (Meleagris gallopavo) spermatozoa. Poult Sci 97: 3709-3717.
  81. Surai PF, Blesbois E, Grasseau I, Chalah T, Brillard J-P, Wishart GJ, Cerolini S, Sparks NH (1998) Fatty acid composition, glutathione peroxidase and superoxide dismutase activity and total antioxidant activity of avian semen. Comp Biochem Physiol B: Biochem Mol Biol 120: 527-533.
  82. Surai PF, Fujihara N, Speake BK, Brillard J-P, Wishart GJ, Sparks NH (2001) Polyunsaturated Fatty Acids, Lipid Peroxidation and Antioxidant Protection in Avian Semen – Review – Asian-Aust J Anim Sci 14: 1024-1050.
  83. Tamburrino L, Marchiani S, Montoya M, Elia Marino F, Natali I, Cambi M, Forti G, Baldi E, Muratori M (2011) Mechanisms and clinical correlates of sperm DNA damage. Asian J Androl 14: 24-31.
  84. Tesarik J Mendoza C, Greco E (2002) Paternal effects acting during the first cell cycle of human preimplantation development after ICSI. Hum Reprod 17: 184-189.
  85. Thananurak P, Chuaychu-Noo N, Thélie A, Phasuk Y, Vongpralub T, Blesbois E (2019) Sucrose increases the quality and fertilizing ability of cryopreserved chicken sperms in contrast to raffinose. Poult Sci 98: 4161-4171.
  86. Thananurak P, Chuaychu-Noo N, Thélie A, Phasuk Y, Vongpralub T, Blesbois E (2020) Different concentrations of cysteamine, ergothioneine, and serine modulate quality and fertilizing ability of cryopreserved chicken sperm. Poult Sci 99: 1185-1198.
  87. Thuwanut P, Axnér E, Johanisson A, Chatdarong K (2009) Detection of Lipid Peroxidation Reaction in Frozen-Thawed Epididymal Cat Spermatozoa Using BODIPY581/591C11. Reprod Domest Anim 44: 373-376.
  88. Trevizan JT, Carreira JT, Carvalho IR, Kipper BH, Nagata WB, Perri SH, Franco Oliveira ME, Pierucci JC, de Koivisto MB (2018) Does lipid peroxidation and oxidative DNA damage differ in cryopreserved semen samples from young, adult and aged Nellore bulls? Anim Reprod Sci 195: 8-15.
  89. Virro MR, Larson-Cook KL, Evenson DP (2004) Sperm chromatin structure assay (SCSA®) parameters are related to fertilization, blastocyst development, and ongoing pregnancy in in vitro fertilization and intracytoplasmic sperm injection cycles. Fertil Steril 81: 1289-1295.
  90. Watson PF (1995) Recent developments and concepts in the cryopreservation of spermatozoa and the assessment of their post-thawing function. Reprod Fertil Dev 7: 871.
  91. Wishart GJ (1984) Effects of lipid peroxide formation in fowl semen on sperm motility, ATP content and fertilizing ability. J Reprod Fertil 71: 113-118.
  92. Wolff SP, Dean RT (1986) Fragmentation of proteins by free radicals and its effect on their susceptibility to enzymic hydrolysis. Biochem J 234: 399-403.
  93. Zaniboni L, Cerolini S (2009) Liquid storage of turkey semen: Changes in quality parameters, lipid composition and susceptibility to induced in vitro peroxidation in control, n-3 fatty acids and alpha-tocopherol rich spermatozoa. Anim Reprod Sci 112: 51-65.
  94. Zini A, Garrels K, Phang D (2000) Antioxidant activity in the semen of fertile and infertile men. Urology 55: 922-926.
Go to article

Authors and Affiliations

A. Partyka
1
A. Babapour
2
M. Mikita
1
S. Adeniran
3
W. Niżański
1

  1. Wroclaw University of Environmental and Life Sciences, Faculty of Veterinary Medicine, Department of Reproduction and Clinic of Farm Animals, pl. Grunwaldzki 49, 50-366 Wroclaw, Poland
  2. University of Tabriz, Faculty of Veterinary Medicine, Department of Basic Sciences, Tabriz, Iran
  3. Mountain Top University, College of Basic and Applied Sciences, Department of Biological Sciences, Ogun State, Nigeria
Download PDF Download RIS Download Bibtex

Abstract

We examined whether allelochemical stress leads to increased lipoxygenase activity in roots of sweet maize (Zea mays L. ssp. saccharata), pea (Pisum sativum L.) and radish (Raphanus sativum L. var. radicula). The lipoxygenase activity of soluble and membrane-bound fractions was assessed in roots after exposure to ferulic and p-coumaric acids. Lipid peroxidation and membrane injury were determined as indicators of stress. Increased lipoxygenase activity of both studied fractions was followed by lipid peroxidation and plasma membrane injury. The results suggest the key role of lipoxygenase in plasma membrane injury during allelochemical stress caused by administration of hydroxycinnamic acids.

Go to article

Authors and Affiliations

Joanna Gmerek
Barbara Politycka

This page uses 'cookies'. Learn more