Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 3
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

Considering concrete nonlinearity, the wave height limit between small and large amplitude sloshing is defined based on the Bernoulli equation. Based on Navier-Stokes equations, the mathematical model of large amplitude sloshing is established for a Concrete Rectangle Liquid-Storage Structure (CRLSS). The results show that the seismic response of a CRLSS increases with the increase of seismic intensity. Under different seismic fortification intensities, the change in trend of wave height, wallboard displacement, and stress are the same, but the amplitudes are not. The areas of stress concentration appear mainly at the connections between the wallboards, and the connections between the wallboard and the bottom.

Go to article

Authors and Affiliations

X. Cheng
D. Li
P. Li
X. Zhang
G. Li
Download PDF Download RIS Download Bibtex

Abstract

The aim of this study was to measure the NO level in boar semen held in a liquid state and to determine its putative relation to spermatozoa motility, plasma membrane integrity, mitochondrial membrane potential and ATP content. Generally, the percentage of spermatozoa which generated nitric oxide gradually increased, while NO level in the surrounding medium declined during the liquid preservation. NO generation in semen preserved in BTS was higher as compared to those in Androhep®Plus. We demonstrated the positive correlation between the NO level in fresh spermatozoa and their quality. We also showed negative correlation between nitric oxide level in spermatozoa preserved in BTS and sperm cells motility as well as plasma membrane integrity. Results obtained in this study confirm that NO may affect sperm physiology in a dualistic manner.
Go to article

Authors and Affiliations

A. Orzołek
Ł. Zasiadczyk
P. Wysocki
W. Kordan
P. Krysztofiak
Download PDF Download RIS Download Bibtex

Abstract

Liquid storage tank is widely used in the petrochemical industry, earthquake will lead to structural damage and secondary disasters, and damping control opens up a new way for seismic design of liquid storage tank. Considering soil-structure-fluid interaction, liquid sloshing dynamic behavior and material nonlinearity, a three-dimensional calculation model of shock absorption liquid storage tank is established by combining sliding isolation and displacement-limiting devices. The dynamic responses of the liquid storage tanks under the action of Kobe and El-Centro waves are investigated, and the influence of soil-structure interaction (SSI) on the dynamic response is discussed. The results show that the damping ratio is basically between 30% and 90%. After the SSI is considered, the damping ratio of liquid sloshing wave height is increased, while the damping ratio of the dynamic response of the liquid storage tank is decreased, and the change of elastic modulus has little effect on the damping effect. The sliding isolation with displacement-limiting devices has significant damping control effects on the liquid sloshing wave height and the dynamic responses of the liquid storage tank.
Go to article

Authors and Affiliations

Wei Jing
1
ORCID: ORCID
Shuang Tian
1
ORCID: ORCID

  1. Western Engineering Research Center of Disaster Mitigation in Civil Engineering of Ministry of Education, Lanzhou University of Technology, Lanzhou 730050, China

This page uses 'cookies'. Learn more