Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 5
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

In a television, obtaining a good acoustic response is a challenging issue because of slim mechanical structures. The area dedicated for speaker’s placement is limited and inadequate space inside the cabinet of a TV prevents possible solutions to increase the sound performance. In addition, frame of the TV’s is getting narrower as the customers searching for the highest screen to body ratio. These designing aspects restrain optimal speaker positioning to achieve good sound performance. In this paper, an analysis related to speaker’s placement and mounting angle is proposed. A rotation setup compatible with a TV was prepared to measure different facing position of the speaker. This paper proposes the analysis of speaker’s rotation and facing direction in a flat panel television and its effects on sound pressure level together with deviation of the acoustic response. Measurement results are analyzed with an audio analyzer together with a statistics tool to achieve precise results.
Go to article

Authors and Affiliations

Ibrahim Demirel
1

  1. Arçelik AS., Electronics HW Design, Turkey
Download PDF Download RIS Download Bibtex

Abstract

Sound intensity measurements using special sensors in a form of pressure-velocity and pressure-pressure probes are becoming more and more often the method of choice for characterization of sound sources. Its wider usability is blocked by the probes’ costs. This paper is on a possible modification of the well-known pressure-pressure sound intensity measurement method. In the proposed new approach a synchronized measurement procedure using only single microphone is used. The paper presents the basics of the sound intensity theory, a review of currently usedmethods of intensity measurement and requirements and limitations of the new method. In the proposed approach one microphone and a properly designed positioning system is used. The application of the method to study the directional characteristics of an active loudspeaker system have been described in detail. The obtained results were compared with those of measurements performed with a commercial p–u probe. The paper contains conclusions indicating advantages of the applied method in comparison with standard pressure measurement methods.

Go to article

Authors and Affiliations

Witold Mickiewicz
Michał Raczyński
Download PDF Download RIS Download Bibtex

Abstract

As the virtual reality (VR) market is growing at a fast pace, numerous users and producers are emerging with the hope to navigate VR towards mainstream adoption. Although most solutions focus on providing highresolution and high-quality videos, the acoustics in VR is as important as visual cues for maintaining consistency with the natural world. We therefore investigate one of the most important audio solutions for VR applications: ambisonics. Several VR producers such as Google, HTC, and Facebook support the ambisonic audio format. Binaural ambisonics builds a virtual loudspeaker array over a VR headset, providing immersive sound. The configuration of the virtual loudspeaker influences the listening perception, as has been widely discussed in the literature. However, few studies have investigated the influence of the orientation of the virtual loudspeaker array. That is, the same loudspeaker arrays with different orientations can produce different spatial effects. This paper introduces a VR audio technique with optimal design and proposes a dual-mode audio solution. Both an objective measurement and a subjective listening test show that the proposed solution effectively enhances spatial audio quality.
Go to article

Authors and Affiliations

Shu-Nung Yao
1

  1. Department of Electrical Engineering, National Taipei University, No. 151, University Rd., Sanxia Dist., New Taipei City 237303, Taiwan
Download PDF Download RIS Download Bibtex

Abstract

The article discusses the issues of accounting the direction pattern of parametric antenna array the propagation of sound over the Earth’s surface. As a radiator, a parametric antenna array is used. A description is given of measuring equipment and experimental research methods. The Delaney-Bezley model was used as a model of the Earth’s surface impedance. The research results showed the importance of accounting the direction pattern of parametric antenna array in predicting the sound pressure level of a propagating acoustic signal over the Earth’s surface. On the example of a difference signal with a frequency of 2 kHz, the calculation of the sound pressure level on a 100-meter path with the influence of the Earth’s surface is shown. The results obtained showed a good agreement between the theoretical calculation and experimental data.

Go to article

Authors and Affiliations

Denis S. Rakov
Aleksandr S. Rakov
Yury A. Chursin
Vsevolod V. Pavlichev
Artyom O. Igumnov
Download PDF Download RIS Download Bibtex

Abstract

The proposed compound sound sources for low-frequency noise control applications are composed of dipole sources. Their spatial radiation, which is critical in the modal field of small, closed spaces, is intended to be controlled with independent driving signals of each dipole. The need for small and efficient low-frequency elementary monopole sources led to the proposed vented sub-woofer loudspeaker design with low force factor (low-Bl) drivers. The investigated sources are set up in quadrupole configurations and measured in terms of polar near field response patterns to verify the theoretical predictions. The measurement results consist of the validation of the proposed compound sound sources on the implementation of active noise control problems in the low-frequency range. Also, their small size and modular construction make them interesting for use in other applications.
Go to article

Bibliography

1. Aarts R.M. (2005), High-efficiency low-Bl loudspeakers, Journal of Audio Engineering Society, 53(7/8): 579–592.
2. AES56-2008 (2014), Standard on acoustics – Sound source modeling – Loudspeaker polar radiation measurements, Audio Engineering Society, New York.
3. Beranek L.L. (1996), Acoustics, Acoustical Society of America, New York, USA, pp. 91–101.
4. Bolton J.S., Gardner B.K., Beauvilain T.A. (1995), Sound cancellation by the use of secondary multipoles, The Journal of Acoustical Society of America, 98(4): 2343–2362, doi: 10.1121/1.414400.
5. Chan Y.J., Huang L., Lam J. (2013), Effects of secondary loudspeaker properties on broadband feedforward active duct noise control, The Journal of the Acoustical Society of America, 134(1): 257–263, doi: 10.1121/1.4808079.
6. Chen W., Pu H., Qiu X. (2010), A compound secondary source for active noise radiation control, Applied Acoustics, 71(2): 101–106, doi: 10.1016/ j.apacoust.2009.08.008.
7. Concha-Barrientos M., Campbell-Lendrum D., Steenland K. (2004), Occupational noise: Assessing the burden of disease from work-related hearing impairment at national and local levels, WHO Environmental Burden of Disease Series, No. 9, WHO, Geneva.
8. Czyzewski A., Kotus J., Kostek B. (2007), Determining the noise impact on hearing using psychoacoustical noise dosimeter, Archives of Acoustics, 32(2): 215–229.
9. Dickason V. (2006), Loudspeaker Design Cookbook, 7th ed., Peterborough, USA: Audio Amateur Press.
10. Giouvanakis M., Kasidakis K., Sevastiadis C., Papanikolaou G. (2019), Design and construction of loudspeakers with low-Bl drivers for low-frequency active noise control applications, Proceedings of the 23rd ICA, pp. 6921–6928, Aachen, Germany, doi: 10.18154/ RWTH-CONV-238865.
11. Giouvanakis M., Sevastiadis C., Papanikolaou G. (2019), Low-frequency noise attenuation in a closed space using adaptive directivity control sources of a quadrupole type, Archives of Acoustics, 44(1): 71– 78, doi: 10.24425/aoa.2019.126353.
12. Giouvanakis M., Sevastiadis C., Vrysis L., Papanikolaou G. (2018), Control of resonant lowfrequency noise simulations in different areas of small spaces using compound sources, Proceedings of Euronoise Conference, pp. 935–941, Crete, Greece.
13. Hill A.J., Hawksford M.O.J. (2010), Chameleon subwoofer arrays – Generalized theory of vectored sources in a closed acoustic space, 128th Audio Engineering Society Convention Convention, paper No. 8074, London.
14. Istvan L.V., Beranek L.L. (2006), Noise and vibration control engineering-Principles and applications, 2nd ed., John Wiley & Sons, New Jersey, USA; pp. 45–150.
15. Keele D.B. (1974), Low-frequency loudspeaker assessment by nearfield sound-pressure measurement, Journal of Audio Engineering Society, 22(3): 154–162.
16. Kido K. (1991), The technologies for active noise control, Journal of Acoustic Society of Japan (E), 12(6): 245–253, doi: 10.1250/ast.12.245.
17. Kotus J., Kostek B. (2008), The noise-induced harmful effect assessment based on the properties of the human hearing system, Archives of Acoustics, 33(4): 435–440.
18. Młynski R., Kozłowski E., Adamczyk J. (2014), Assessment of impulse noise hazard and the use of hearing protection devices in workplaces where forging hammers are used, Archives of Acoustics, 39(1): 73–79, doi: 10.2478/aoa-2014-0008.
19. Olson H.F. (1973), Gradient loudspeakers, Journal of Audio Engineering Society, 21(2): 86–93.
20. Pawlaczyk-Łuszczynska M., Dudarewicz A., Waszkowska M., Szymczak W., Kameduła M., Sliwinska-Kowalska M. (2004), Does low frequency noise affect human mental performance?, Archives of Acoustics, 29(2): 205–218.
21. Persson W.K. (2011), Noise and health – effects of low frequency noise and vibrations: environmental and occupational perspectives, Encyclopedia of Environmental Health, 4: 240–253.
22. Qiu X., Hansen C.H. (2000), Secondary acoustic source types for active noise control in free field: monopoles or multipoles?, Journal of Sound and Vibration, 232(5): 1005–1009, doi: 10.1006/jsvi.1999.2702.
23. Russell D.A., Titlow J.P., Bemmen Y.J. (1999), Acoustic monopoles, dipoles, and quadrupoles: An experiment revisited, American Journal of Physics, 67(8): 660–664, doi: 10.1119/1.19349.
24. Shehap A.M., Shawky H.A., El-Basheer T.M. (2016), Study and assessment of low frequency noise in occupational settings, Archives of Acoustics, 41(1): 151–160, doi: 10.1515/aoa-2016-0015.
25. Small R.H. (1972), Simplified Loudspeaker Measurements at Low Frequencies, Journal of Audio Engineering Society, 20(1): 28–33.
26. Small R.H. (1973), Vented-box loudspeaker systems. Part 1: Small-signal analysis, Journal of Audio Engineering Society, 21(5): 363–372.
27. Wang S., Sun H., Pan J., Qiu X. (2018), Near-field error sensing for active directivity control of radiated sound, The Journal of the Acoustical Society of America, 144(2): 598–607, doi: 10.1121/1.5049145.
28. Wang S., Yu J., Qiu X., Pawelczyk M., Shaid A., Wang L. (2017), Active sound radiation control with secondary sources at the edge of the opening, Applied Acoustics, 117(Part A): 173–179, doi: 10.1016/ j.apacoust.2016.10.027.
29. Wrona S., Pawełczyk M. (2016), Feedforward control of a light-weight device casing for active noise reduction, Archives of Acoustics, 41(3): 499–505, doi: 10.1515/aoa-2016-0048.
30. Zagubien A., Wolniewicz K. (2020), The assessment of infrasound and low frequency noise impact on the results of learning in primary school – case study, Archives of Acoustics, 45(1): 93–102, doi: 10.24425/aoa.2020.132485.

Go to article

Authors and Affiliations

Marios Giouvanakis
1
Christos Sevastiadis
1
George Papanikolaou
1

  1. Department of Electrical and Computer Engineering, Aristotle University of Thessaloniki

This page uses 'cookies'. Learn more