Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 12
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

Studies of electrical properties, including noise properties, of thick-film resistors prepared from various resistive and conductive materials on LTCC substrates have been described. Experiments have been carried out in the temperature range from 300 K up to 650 K using two methods, i.e. measuring (i) spectra of voltage fluctuations observed on the studied samples and (ii) the current noise index by a standard meter, both at constant temperature and during a temperature sweep with a slow rate. The 1/f noise component caused by resistance fluctuations occurred to be dominant in the entire range of temperature. The dependence of the noise intensity on temperature revealed that a temperature change from 300 K to 650 K causes a rise in magnitude of the noise intensity approximately one order of magnitude. Using the experimental data, the parameters describing noise properties of the used materials have been calculated and compared to the properties of other previously studied thick-film materials.

Go to article

Authors and Affiliations

Adam Witold Stadler
Zbigniew Zawiślak
Andrzej Dziedzic
Damian Nowak
Download PDF Download RIS Download Bibtex

Abstract

Low frequency noise is one of the most harmful factors occurring in human working and living environment. Low frequency noise components from 20 to 250 Hz are often the cause of employee complaints. Noise from power stations is an actual problem for large cities, including Cairo. The noise from equipments of station could be a serious problem for station and for environmental area. The development of power stations in Cairo leads to appearing a wide range of gas turbines which are strong source of noise. Two measurement techniques using C-weighted along side the A-weighted scale are explored. C-weighting is far more sensitive to detect low frequency sound. Spectrum analysis in the low frequency range is done in order to identify a significant tonal component. Field studies were supported by a questionnaire to determine whether sociological or other factors might influence the results by using annoyance rating mean value. Subjects included in the study were 153 (mean = 36.86, SD = 8.49) male employees at the three electrical power stations. The (C-A) level difference is an appropriate metric for indicating a potential low frequency noise problem. A-weighting characteristics seem to be able to predict quite accurately annoyance experienced from LFN at workplaces. The aim of the present study is to find simple and reliable method for assessing low frequency noise in occupational environment to prevent its effects on work performance for the workers. The proposed method has to be compared with European methods.
Go to article

Authors and Affiliations

Adel M. Shehap
Hany A. Shawky
Tarek M. El-Basheer
Download PDF Download RIS Download Bibtex

Abstract

Studies of noise properties of thick-film conducting lines from Au or PdAg conductive pastes on LTCC or alumina substrates are reported. Experiments have been carried out at the room temperature on samples prepared in the form of meanders by traditional screen-printing or laser-shaping technique. Due to a low resistance of the devices under test (DUTs), low-frequency noise spectra have been measured for the dc-biased samples arranged in a bridge configuration, transformer-coupled to a low-noise amplifier. The detailed analysis of noise sources in the signal path and its transfer function, including the transformer, has been carried out, and a procedure for measurement setup self-calibration has been described. The 1/f noise component originating from resistance fluctuations has been found to be dominant in all DUTs. The analysis of experimental data leads to the conclusion that noise is produced in the bends of meanders rather than in their straight segments. It occurs that noise of Au-based laser-shaped lines is significantly smaller than screen-printed ones. PdAg lines have been found more resistive but simultaneously less noisy than Au-based lines.
Go to article

Authors and Affiliations

Adam Witold Stadler
Andrzej Kolek
Krzysztof Mleczko
Zbigniew Zawiślak
Andrzej Dziedzic
Damian Nowak
Download PDF Download RIS Download Bibtex

Abstract

Graphene is a very promising material for potential applications in many fields. Since manufacturing technologies of graphene are still at the developing stage, low-frequency noise measurements as a tool for evaluating their quality is proposed. In this work, noise properties of polymer thick-film resistors with graphene nano-platelets as a functional phase are reported. The measurements were carried out in room temperature. 1/f noise caused by resistance fluctuations has been found to be the main component in the specimens. The parameter values describing noise intensity of the polymer thick-film specimens have been calculated and compared with the values obtained for other thick-film resistors and layers used in microelectronics. The studied polymer thick-film specimens exhibit rather poor noise properties, especially for the layers with a low content of the functional phase.

Go to article

Authors and Affiliations

Krzysztof Mleczko
Piotr Ptak
Zbigniew Zawiślak
Marcin Słoma
Małgorzata Jakubowska
Andrzej Kolek
Download PDF Download RIS Download Bibtex

Abstract

The proposed compound sound sources for low-frequency noise control applications are composed of dipole sources. Their spatial radiation, which is critical in the modal field of small, closed spaces, is intended to be controlled with independent driving signals of each dipole. The need for small and efficient low-frequency elementary monopole sources led to the proposed vented sub-woofer loudspeaker design with low force factor (low-Bl) drivers. The investigated sources are set up in quadrupole configurations and measured in terms of polar near field response patterns to verify the theoretical predictions. The measurement results consist of the validation of the proposed compound sound sources on the implementation of active noise control problems in the low-frequency range. Also, their small size and modular construction make them interesting for use in other applications.
Go to article

Bibliography

1. Aarts R.M. (2005), High-efficiency low-Bl loudspeakers, Journal of Audio Engineering Society, 53(7/8): 579–592.
2. AES56-2008 (2014), Standard on acoustics – Sound source modeling – Loudspeaker polar radiation measurements, Audio Engineering Society, New York.
3. Beranek L.L. (1996), Acoustics, Acoustical Society of America, New York, USA, pp. 91–101.
4. Bolton J.S., Gardner B.K., Beauvilain T.A. (1995), Sound cancellation by the use of secondary multipoles, The Journal of Acoustical Society of America, 98(4): 2343–2362, doi: 10.1121/1.414400.
5. Chan Y.J., Huang L., Lam J. (2013), Effects of secondary loudspeaker properties on broadband feedforward active duct noise control, The Journal of the Acoustical Society of America, 134(1): 257–263, doi: 10.1121/1.4808079.
6. Chen W., Pu H., Qiu X. (2010), A compound secondary source for active noise radiation control, Applied Acoustics, 71(2): 101–106, doi: 10.1016/ j.apacoust.2009.08.008.
7. Concha-Barrientos M., Campbell-Lendrum D., Steenland K. (2004), Occupational noise: Assessing the burden of disease from work-related hearing impairment at national and local levels, WHO Environmental Burden of Disease Series, No. 9, WHO, Geneva.
8. Czyzewski A., Kotus J., Kostek B. (2007), Determining the noise impact on hearing using psychoacoustical noise dosimeter, Archives of Acoustics, 32(2): 215–229.
9. Dickason V. (2006), Loudspeaker Design Cookbook, 7th ed., Peterborough, USA: Audio Amateur Press.
10. Giouvanakis M., Kasidakis K., Sevastiadis C., Papanikolaou G. (2019), Design and construction of loudspeakers with low-Bl drivers for low-frequency active noise control applications, Proceedings of the 23rd ICA, pp. 6921–6928, Aachen, Germany, doi: 10.18154/ RWTH-CONV-238865.
11. Giouvanakis M., Sevastiadis C., Papanikolaou G. (2019), Low-frequency noise attenuation in a closed space using adaptive directivity control sources of a quadrupole type, Archives of Acoustics, 44(1): 71– 78, doi: 10.24425/aoa.2019.126353.
12. Giouvanakis M., Sevastiadis C., Vrysis L., Papanikolaou G. (2018), Control of resonant lowfrequency noise simulations in different areas of small spaces using compound sources, Proceedings of Euronoise Conference, pp. 935–941, Crete, Greece.
13. Hill A.J., Hawksford M.O.J. (2010), Chameleon subwoofer arrays – Generalized theory of vectored sources in a closed acoustic space, 128th Audio Engineering Society Convention Convention, paper No. 8074, London.
14. Istvan L.V., Beranek L.L. (2006), Noise and vibration control engineering-Principles and applications, 2nd ed., John Wiley & Sons, New Jersey, USA; pp. 45–150.
15. Keele D.B. (1974), Low-frequency loudspeaker assessment by nearfield sound-pressure measurement, Journal of Audio Engineering Society, 22(3): 154–162.
16. Kido K. (1991), The technologies for active noise control, Journal of Acoustic Society of Japan (E), 12(6): 245–253, doi: 10.1250/ast.12.245.
17. Kotus J., Kostek B. (2008), The noise-induced harmful effect assessment based on the properties of the human hearing system, Archives of Acoustics, 33(4): 435–440.
18. Młynski R., Kozłowski E., Adamczyk J. (2014), Assessment of impulse noise hazard and the use of hearing protection devices in workplaces where forging hammers are used, Archives of Acoustics, 39(1): 73–79, doi: 10.2478/aoa-2014-0008.
19. Olson H.F. (1973), Gradient loudspeakers, Journal of Audio Engineering Society, 21(2): 86–93.
20. Pawlaczyk-Łuszczynska M., Dudarewicz A., Waszkowska M., Szymczak W., Kameduła M., Sliwinska-Kowalska M. (2004), Does low frequency noise affect human mental performance?, Archives of Acoustics, 29(2): 205–218.
21. Persson W.K. (2011), Noise and health – effects of low frequency noise and vibrations: environmental and occupational perspectives, Encyclopedia of Environmental Health, 4: 240–253.
22. Qiu X., Hansen C.H. (2000), Secondary acoustic source types for active noise control in free field: monopoles or multipoles?, Journal of Sound and Vibration, 232(5): 1005–1009, doi: 10.1006/jsvi.1999.2702.
23. Russell D.A., Titlow J.P., Bemmen Y.J. (1999), Acoustic monopoles, dipoles, and quadrupoles: An experiment revisited, American Journal of Physics, 67(8): 660–664, doi: 10.1119/1.19349.
24. Shehap A.M., Shawky H.A., El-Basheer T.M. (2016), Study and assessment of low frequency noise in occupational settings, Archives of Acoustics, 41(1): 151–160, doi: 10.1515/aoa-2016-0015.
25. Small R.H. (1972), Simplified Loudspeaker Measurements at Low Frequencies, Journal of Audio Engineering Society, 20(1): 28–33.
26. Small R.H. (1973), Vented-box loudspeaker systems. Part 1: Small-signal analysis, Journal of Audio Engineering Society, 21(5): 363–372.
27. Wang S., Sun H., Pan J., Qiu X. (2018), Near-field error sensing for active directivity control of radiated sound, The Journal of the Acoustical Society of America, 144(2): 598–607, doi: 10.1121/1.5049145.
28. Wang S., Yu J., Qiu X., Pawelczyk M., Shaid A., Wang L. (2017), Active sound radiation control with secondary sources at the edge of the opening, Applied Acoustics, 117(Part A): 173–179, doi: 10.1016/ j.apacoust.2016.10.027.
29. Wrona S., Pawełczyk M. (2016), Feedforward control of a light-weight device casing for active noise reduction, Archives of Acoustics, 41(3): 499–505, doi: 10.1515/aoa-2016-0048.
30. Zagubien A., Wolniewicz K. (2020), The assessment of infrasound and low frequency noise impact on the results of learning in primary school – case study, Archives of Acoustics, 45(1): 93–102, doi: 10.24425/aoa.2020.132485.

Go to article

Authors and Affiliations

Marios Giouvanakis
1
Christos Sevastiadis
1
George Papanikolaou
1

  1. Department of Electrical and Computer Engineering, Aristotle University of Thessaloniki
Download PDF Download RIS Download Bibtex

Abstract

The paper presents a low noise voltage FET amplifier for low frequency noise measurements. It was built using two stages of an op amp transimpedance amplifier. To reduce voltage noise, eight-paralleled low noise discrete JFETs were used in the first stage. The designed amplifier was then compared to commercial ones. Its measured value of voltage noise spectral density is around 24 nV/√ Hz, 3 nV/√ Hz, 0.95 nV/√Hz and 0.6 nV/√ Hz at the frequency of 0.1, 1, 10 and 100 Hz, respectively. A −3 dB frequency response is from ∼ 20 mHz to ∼ 600 kHz.

Go to article

Authors and Affiliations

Krzysztof Achtenberg
ORCID: ORCID
Janusz Mikołajczyk
ORCID: ORCID
Zbigniew Bielecki
ORCID: ORCID
Download PDF Download RIS Download Bibtex

Abstract

In this paper, we present metrology and control methods and techniques for electromagnetically actuated microcantilevers. The electromagnetically actuated cantilevers belong to the micro electro mechanical systems (MEMS), which can be used in high resolution force and mass change investigations. In the described experiments, silicon cantilevers with an integrated Lorentz current loop were investigated. The electromagnetically actuated cantilevers were characterized using a modified optical beam deflection (OBD) system, whose architecture was optimized in order to increase its resolution. The sensitivity of the OBD system was calibrated using a reference cantilever, whose spring constant was determined through thermomechanical noise analysis registered interferometrically. The optimized and calibrated OBD system was used to observe the resonance and bidirectional static deflection of the electromagnetically deflected cantilevers. After theoretical analysis and further experiments, it was possible to obtain setup sensitivity equal to 5.28 mV/nm.
Go to article

Bibliography

[1] Binnig, G., Quate, C. F., & Gerber, C. (1986). Atomic force microscope. Physical Review Letters, 56(9), 930. https://doi.org/10.1103/PhysRevLett.56.930
[2] Judy, J. W. (2001). Microelectromechanical systems (MEMS): fabrication, design and applications. Smart Materials and Structures, 10(6), 1115–1134. https://doi.org/10.1088/0964-1726/10/6/301
[3] Algamili, A. S., Khir, M. H. M., Dennis, J. O., Ahmed, A. Y., Alabsi, S. S., Hashwan, S. S. B., & Junaid, M. M. (2021). A review of actuation and sensing mechanisms in MEMS-based sensor devices. Nanoscale Research Letters, 16(1), 1–21. https://doi.org/10.1186/s11671-021-03481-7
[4] Woszczyna, M., Gotszalk, T., Zawierucha, P., Zielony, M., Ivanow, Tzv., Ivanowa, K., Sarov, Y., Nikolov, N., Mielczarski, J., Mielczarska, E., & Rangelow, I. W. (2009). Thermally driven piezoresistive cantilevers for shear-force microscopy. Microelectronic Engineering, 86(4), 1212–1215. https://doi.org/10.1016/j.mee.2009.01.043
[5] Shen, B., Allegretto, W., Hu, M., & Robinson, A. M. (1996). CMOS micromachined cantileverin- cantilever devices with magnetic actuation. IEEE Electron Device Letters, 17(7), 372–374. https://doi.org/10.1109/55.506371
[6] Adhikari, R., Kaundal, R., Sarkar, A., Rana, P., & Das, A. K. (2012). The cantilever beam magnetometer: A simple teaching tool for magnetic characterization. American Journal of Physics, 80(3), 225–231. https://doi.org/10.1119/1.3679840
[7] Hsieh, C. H., Dai, C. L., & Yang, M. Z. (2013). Fabrication and Characterization of CMOS-MEMS Magnetic Microsensors. Sensors, 13(11), 14728–14739. https://doi.org/10.3390/s131114728
[8] Rhoads, J. F., Kumar, V., Shaw, S. W., & Turner, K. L. (2013). The non-linear dynamics of electromagnetically actuated microbeam resonators with purely parametric excitations. International Journal of Non-Linear Mechanics, 55, 79–89. https://doi.org/10.1016/j.ijnonlinmec.2013.04.003
[9] Lee, B., Prater, C. B.,&King,W. P. (2012). Lorentz force actuation of a heated atomic force microscope cantilever. Nanotechnology, 23(5), 055709. https://doi.org/10.1088/0957-4484/23/5/055709
[10] Neuman, K. C., & Nagy, A. (2008). Single-molecule force spectroscopy: optical tweezers, magnetic tweezers and atomic force microscopy. Nature Methods, 5(6), 491–505. https://doi.org/10.1038/nmeth.1218
[11] Hoogenboom, B. W., Frederix, P. L. T. M., Yang, J. L., Martin, S., Pellmont, Y., Steinacher, M., Zäch, S., Langenbach, E., Heimbeck, H.-J., Engel, A., & Hug, H. J. (2005). A Fabry–Perot interferometer for micrometer-sized cantilevers. Applied Physics Letters, 86(7), 074101-1. https://doi.org/10.1063/1.1866229
[12] Meyer, G., & Amer, N. M. (1988). Novel optical approach to atomic force microscopy. Applied Physics Letters, 53(12), 1045–1047. https://doi.org/10.1063/1.100061
[13] Boisen, A., Dohn, S., Keller, S. S., Schmid, S., & Tenje, M. (2011). Cantilever-like micromechanical sensors. Reports on Progress in Physics, 74(3), 036101. https://doi.org/10.1088/0034-4885/74/3/036101
[14] Gimzewski, J. K., Gerber, Ch., Meyer, E., & Schlittler, R. R. (1994). Observation of a chemical reaction using a micromechanical sensor. Chemical Physics Letters, 217(5), 589–594. https://doi.org/ 10.1016/0009-2614(93)E1419-H
[15] Wu, G., Ji, H., Hansen, K., Thundat, T., Datar, R., Cote, R., Hagan, M. F., Chakraborty, A. K., & Majumdar, A. (2001). Origin of nanomechanical cantilever motion generated from biomolecular interactions. Proceedings of the National Academy of Sciences, 98(4), 1560–1564. https://doi.org/10.1073/pnas.98.4.1560 [16] Nieradka, K., Kapczynska, K., Rybka, J., Lipinski, T., Grabiec, P., Skowicki, M.,&Gotszalk, T. (2014). Microcantilever array biosensors for detection and recognition of Gram-negative bacterial endotoxins. Sensors and Actuators B: Chemical, 198, 114–124. https://doi.org/10.1016/j.snb.2014.03.023
[17] Helm, M., Servant, J. J., Saurenbach, F., & Berger, R. (2005). Read-out of micromechanical cantilever sensors by phase shifting interferometry. Applied Physics Letters, 87(6), 064101. https://doi.org/10.1063/1.2008358
[18] Putman, C. A. J., de Grooth, B. G., van Hulst, N. F., & Greve, J. (1992). A theoretical comparison between interferometric and optical beam deflection technique for the measurement of cantilever displacement in AFM. Ultramicroscopy, 42, 1509–1513. https://doi.org/10.1016/0304-3991(92) 90474-X
[19] Putman, C. A. J., de Grooth, B. G., van Hulst, N. F., & Greve, J. (1992). A detailed analysis of the optical beam deflection technique for use in atomic force microscopy. Journal of Applied Physics, 72(1), 6–12. https://doi.org/10.1063/1.352149
[20] Hu, Z., Seeley, T., Kossek, S.,&Thundat, T. (2004). Calibration of optical cantilever deflection readers. Review of Scientific Instruments, 75(2), 400–404. https://doi.org/10.1063/1.1637457
[21] Fukuma, T., Kimura, M., Kobayashi, K., Matsushige, K., & Yamada, H. (2005). Development of low noise cantilever deflection sensor for multienvironment frequency-modulation atomic force microscopy. Review of Scientific Instruments, 76(5), 053704. https://doi.org/10.1063/1.1896938
[22] Nieradka, K., Kopiec, D., Małozi˛ec, G., Kowalska, Z., Grabiec, P., Janus, P., Sierakowski, A., Domanski, K., & Gotszalk, T. (2012). Fabrication and characterization of electromagnetically actuated microcantilevers for biochemical sensing, parallel AFM and nanomanipulation. Microelectronic Engineering, 98, 676–679. https://doi.org/10.1016/j.mee.2012.06.019
[23] Miyatani, T., & Fujihira, M. (1997). Calibration of surface stress measurements with atomic force microscopy. Journal of Applied Physics, 81(11), 7099–7115. https://doi.org/10.1063/1.365306
[24] Mishra, R., Grange, W., & Hegner, M. (2012). Rapid and reliable calibration of laser beam deflection system for microcantilever-based sensor setups. Journal of Sensors, 2021, 617386. https://doi.org/10.1155/2012/617386
[25] Naeem, S., Liu, Y., Nie, H. Y., Lau, W. M., & Yang, J. (2008). Revisiting atomic force microscopy force spectroscopy sensitivity for single molecule studies. Journal of Applied Physics, 104(11), 114504. https://doi.org/10.1063/1.3037206
[26] Lee, J., Beechem, T., Wright, T. L., Nelson, B. A., Graham, S., & King, W. P. (2006). Electrical, thermal, and mechanical characterization of silicon microcantilever heaters. Journal of Microelectromechanical Systems, 15(6), 1644–1655. https://doi.org/10.1109/JMEMS.2006.886020
[27] Skwierczynski, J. M., Małozi˛ec, G., Kopiec, D., Nieradka, K., Radojewski, J., & Gotszalk, T. (2011). Radio frequency modulation of semiconductor laser as an improvement method of noise performance of scanning probe microscopy position sensitive detectors. Optica Applicata, 41(2), 323–331.
[28] Butt, H.-J., & Jaschke, M. (1995). Calculation of thermal noise in atomic force microscopy. Nanotechnology, 6(1), 1. https://doi.org/10.1088/0957-4484/6/1/001
[29] Ohler, B. (2007). Cantilever spring constant calibration using laser Doppler vibrometry. Review of Scientific Instruments, 78(6), 063701. https://doi.org/10.1063/1.2743272
[30] Cleveland, J. P., Manne, S., Bocek, D.,&Hansma, P. K. (1993).Anondestructive method for determining the spring constant of cantilevers for scanning force microscopy. Review of Scientific Instruments, 64(2), 403–405. https://doi.org/10.1063/1.1144209
[31] Lévy, R., & Maaloum, M. (2002). Measuring the spring constant of atomic force microscope cantilevers: thermal fluctuations and other methods. Nanotechnology, 13(1), 33. https://doi.org/10.1088/095-4484/13/1/307
[32] Rast, S.,Wattinger, C., Gysin, U.,&Meyer, E. (2000). The noise of cantilevers. Nanotechnology, 11(3), 169. https://doi.org/10.1088/0957-4484/11/3/306
Go to article

Authors and Affiliations

Daniel Kopiec
1
Wojciech Majstrzyk
2
Bartosz Pruchnik
1
Ewelina Gacka
1
Dominik Badura
1
Andrzej Sierakowski
2
Paweł Janus
2
Teodor Gotszalk
1

  1. Wrocław University of Technology, Faculty of Microsystems Electronics and Photonics, Department of Nanometrology, Janiszewskiego 11/17, Wrocław 50-372, Poland
  2. Łukasiewicz Research Network, Institute of Microelectronics and Fotonics, Lotników 32/46, Warsaw 02-668, Poland
Download PDF Download RIS Download Bibtex

Abstract

The paper presents the current state of knowledge concerning the sources of noise generated by wind turbines, force measurement methodology, and assessment of noise onerousness in this type of installation, on the basis of a study concerning a wind farm with five REpower MM92 wind turbines and the electric power of 2 MW and the sound power level of 104.2 dB(A) each. Particular attention was focused on the often discussed problem of presence of infrasound generated by turbines and on the requirements of the applicable reference methodologies for the measurement of wind speed to 5 m/s, while the turbine reaches its full power at speeds above 10 m/s.
Go to article

Authors and Affiliations

Maciej Kłaczyński
Tadeusz Wszołek
Download PDF Download RIS Download Bibtex

Abstract

Low-frequency noise measurements have long been recognized as a valuable tool in the examination of quality and reliability of metallic interconnections in the microelectronic industry. While characterized by very high sensitivity, low-frequency noise measurements can be extremely time-consuming, especially when tests have to be carried out over an extended temperature range and with high temperature resolution as it is required by some advanced characterization approaches recently proposed in the literature. In order to address this issue we designed a dedicated system for the characterization of the low-frequency noise produced by a metallic line vs temperature. The system combines high flexibility and automation with excellent background noise levels. Test temperatures range from ambient temperature up to 300◦C. Measurements can be completely automated with temperature changing in pre-programmed steps. A ramp temperature mode is also possible that can be used, with proper caution, to virtually obtain a continuous plot of noise parameters vs temperature.

Go to article

Authors and Affiliations

Graziella Scandurra
Sofie Beyne
Gino Giusi
Carmine Ciofi
Download PDF Download RIS Download Bibtex

Abstract

Measurement of low-frequency noise properties of modern electronic components is a very demanding challenge due to the low magnitude of a noise signal and the limit of a dissipated power. In such a case, an ac technique with a lock-in amplifier or the use of a low-noise transformer as the first stage in the signal path are common approaches. A software dual-phase virtual lock-in (VLI) technique has been developed and tested in low-frequency noise studies of electronic components. VLI means that phase-sensitive detection is processed by a software layer rather than by an expensive hardware lock-in amplifier. The VLI method has been tested in exploration of noise in polymer thick-film resistors. Analysis of the obtained noise spectra of voltage fluctuations confirmed that the 1/f noise caused by resistance fluctuations is the dominant one. The calculated value of the parameter describing the noise intensity of a resistive material, C = 1·10−21 m3, is consistent with that obtained with the use of a dc method. On the other hand, it has been observed that the spectra of (excitation independent) resistance noise contain a 1/f component whose intensity depends on the excitation frequency. The phenomenon has been explained by means of noise suppression by impedances of the measurement circuit, giving an excellent agreement with the experimental data.
Go to article

Authors and Affiliations

Adam Witold Stadler
Andrzej Kolek
Zbigniew Zawiślak
Andrzej Dziedzic
Download PDF Download RIS Download Bibtex

Abstract

This paper concerns measurements and calculations of low frequency noise for semiconductor layers with four-probe electrodes. The measurements setup for the voltage noise cross-correlation method is described. The gain calculations for local resistance noise are performed to evaluate the contribution to total noise from different areas of the layer. It was shown, through numerical calculations and noise measurements, that in four-point probe specimens, with separated current and voltage terminals, the non-resistance noise of the contact and the resistance noise of the layer can be identified. The four-point probe method is used to find the low frequency resistance noise of the GaSb layer with a different doping type. For n-type and p-type GaSb layers with low carrier concentrations, the measured noise is dominated by the non-resistance noise contributions from contacts. Low frequency resistance noise was identified in high-doped GaSb layers (both types). At room temperature, such resistance noise in an n-type GaSb layer is significantly larger than for p-type GaSb with comparable doping concentration.

Go to article

Authors and Affiliations

L. Ciura
A. Kolek
D. Smoczyński
A. Jasik
Download PDF Download RIS Download Bibtex

Abstract

This paper presents the concept and modern technological approach to the fabrication of discrete, integrated and integral micropassives. The role of these components in modern electronic circuits is discussed too. The material, technological and constructional solutions and their relation with electrical and stability properties are analyzed in details for linear and nonlinear microresistors made and characterized at the Faculty of Microsystem Technology, Wrocław University of Technology.

Go to article

Authors and Affiliations

A. Dziedzic

This page uses 'cookies'. Learn more