Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 3
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

Low-frequency noise measurements have long been recognized as a valuable tool in the examination of quality and reliability of metallic interconnections in the microelectronic industry. While characterized by very high sensitivity, low-frequency noise measurements can be extremely time-consuming, especially when tests have to be carried out over an extended temperature range and with high temperature resolution as it is required by some advanced characterization approaches recently proposed in the literature. In order to address this issue we designed a dedicated system for the characterization of the low-frequency noise produced by a metallic line vs temperature. The system combines high flexibility and automation with excellent background noise levels. Test temperatures range from ambient temperature up to 300◦C. Measurements can be completely automated with temperature changing in pre-programmed steps. A ramp temperature mode is also possible that can be used, with proper caution, to virtually obtain a continuous plot of noise parameters vs temperature.

Go to article

Authors and Affiliations

Graziella Scandurra
Sofie Beyne
Gino Giusi
Carmine Ciofi
Download PDF Download RIS Download Bibtex

Abstract

Measurement of low-frequency noise properties of modern electronic components is a very demanding challenge due to the low magnitude of a noise signal and the limit of a dissipated power. In such a case, an ac technique with a lock-in amplifier or the use of a low-noise transformer as the first stage in the signal path are common approaches. A software dual-phase virtual lock-in (VLI) technique has been developed and tested in low-frequency noise studies of electronic components. VLI means that phase-sensitive detection is processed by a software layer rather than by an expensive hardware lock-in amplifier. The VLI method has been tested in exploration of noise in polymer thick-film resistors. Analysis of the obtained noise spectra of voltage fluctuations confirmed that the 1/f noise caused by resistance fluctuations is the dominant one. The calculated value of the parameter describing the noise intensity of a resistive material, C = 1·10−21 m3, is consistent with that obtained with the use of a dc method. On the other hand, it has been observed that the spectra of (excitation independent) resistance noise contain a 1/f component whose intensity depends on the excitation frequency. The phenomenon has been explained by means of noise suppression by impedances of the measurement circuit, giving an excellent agreement with the experimental data.
Go to article

Authors and Affiliations

Adam Witold Stadler
Andrzej Kolek
Zbigniew Zawiślak
Andrzej Dziedzic
Download PDF Download RIS Download Bibtex

Abstract

The paper presents a low noise voltage FET amplifier for low frequency noise measurements. It was built using two stages of an op amp transimpedance amplifier. To reduce voltage noise, eight-paralleled low noise discrete JFETs were used in the first stage. The designed amplifier was then compared to commercial ones. Its measured value of voltage noise spectral density is around 24 nV/√ Hz, 3 nV/√ Hz, 0.95 nV/√Hz and 0.6 nV/√ Hz at the frequency of 0.1, 1, 10 and 100 Hz, respectively. A −3 dB frequency response is from ∼ 20 mHz to ∼ 600 kHz.

Go to article

Authors and Affiliations

Krzysztof Achtenberg
ORCID: ORCID
Janusz Mikołajczyk
ORCID: ORCID
Zbigniew Bielecki
ORCID: ORCID

This page uses 'cookies'. Learn more