Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 2
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

The main aim of this paper is to present recent knowledge about the assessment and evaluation of low frequency noise and infrasound close to the threshold of hearing and the potential effects on human health. Low frequency noise generated by air flowing over a moving car with the open window is chosen as a source of noise. The noise within the interior of the car and its effects on a driver’s comfort at different velocities is analyzed. An open window at high velocity behaves as a source of specifically strong tonal low frequency noise which is annoying. The interior noise of a passenger car was measured under different conditions; while driving on normal highway and roadways. First, an octave-band analysis was used to assess the noise level and its impact on the driver’s comfort. Second, a Fast Fourier Transform (FFT) analysis was used for the detection of tonal low frequency noise. Finally, the paper suggests possibilities for scientifically assessing and evaluating low frequency noise but not only for the presented source of the sound.
Go to article

Authors and Affiliations

Stanislav Žiaran
Download PDF Download RIS Download Bibtex

Abstract

Hydroacoustic projectors are useful for generating low frequency sounds in water. Existing works on hydroacoustic projectors require two significant enhancements, especially for designers. First, we need to understand the influence of important projector design parameters on its performance. Such insights can be very useful in developing a compact and efficient projector. Second, there is a need for an integrated model of the projector based on easily available and user-friendly numerical tools which do not require development of complex customised mathematical analogs of projector components. The present work addresses both such needs. Towards these goals, an experimentally validated, easy-to-build projector model was developed and used to conduct design sensitivity studies. We show that reductions in pipe compliance and air content in oil, and an increase in orifice discharge coefficient can yield remarkable improvements in projector’s SPL. We also show that reductions in pipe length and cylinder diameter cause moderate improvements in performance in mass and stiffness controlled regions, respectively. In contrast, the projector performance is insensitive to changes in pistonic mass, cylinder length, and diaphragm stiffness. Finally, we report that while pipe compliance and air content in oil can sharply alter system resonance, the effects of changes in pipe length and pistonic mass on it are moderate in nature.
Go to article

Authors and Affiliations

Vattaparambil Sreedharan Sreejith
1
Nachiketa Tiwari
1

  1. Dhwani Laboratory, Department of Mechanical Engineering, Indian Institute of Technology Kanpur, Uttar Pradesh 208016, India

This page uses 'cookies'. Learn more