Search results

Filters

  • Journals
  • Autorzy
  • Keywords
  • Date
  • Typ

Search results

Number of results: 7
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

The paper shows the usefulness of the lung mechanical model for time and frequency characteristics reconstruction proper for the mechanics of an adult human respiratory system in its various regimes of work. The complex set-up for measurements of human respiratory system mechanics is presented. Two separate scenarios were created, firstly, the mechanical model was examined using standard mechanical ventilation routine with embedded Interrupter Technique and then the Optimized Ventilator Waveform technique was tested. An analysis of experimental results is presented, as well as an outline of the issues and problems revealed during investigations.

Go to article

Authors and Affiliations

Kamil Jakuszkin
Download PDF Download RIS Download Bibtex

Abstract

The effect of Ageratina adenophora on pathological characteristics of the liver and lungs as well as serum biochemical parameters in horses were investigated. Ten horses without ingestion history of Ageratina adenophora were classified into the control group, and 10 poisoned but survived horses with 3 months ingestion history were set as the case group. Results showed that serum AST, ALT, ALP, magnesium and phosphorus were elevated significantly, while creatinine was decreased remarkably. Hematoxylin and eosin staining of liver tissues showed diffuse swelling or destruction of hepatocytes, narrowing or atrophy of the hepatic sinusoids, and little lymphocytic infiltration; lung tissues presented destroyed alveoli and inflammatory cell infiltration.
Go to article

Bibliography


Feldman AT, Wolfe D (2014) Tissue processing and hematoxylin and eosin staining. Methods Mol Biol 1180: 31-43.

Jie F, Hu YC, Chen WH, Weng JH, Hu LW, Zhen S, He YJ, Quan M, Wang Y, Ren ZH (2018) Dosage-dependent effects of Eupatorium adenophorum on Saanen goat blood levels and the histopathology of several organs. Pratacul Sci 2: 11.

O’Sullivan BM (1979) Crofton weed (Eupatorium adenophorum) toxicity in horses. Aust Vet J 55: 19-21.

O’Sullivan BM (1985) Investigations into Crofton weed (Eupatorium adenophorum) toxicity in horses. Aust Vet J 62: 30-32.

Pessoa CR, Pessoa AF, Maia LA, Medeiros RM, Colegate SM, Barros SS, Soares MP, Borges AS, Riet-Correa F (2013) Pulmonary and hepatic lesions caused by the dehydropyrrolizidine alkaloid-producing plants Crotalaria juncea and Crotalaria retusa in donkeys. Toxicon 71: 113-120.

Rhiouani H, El-Hilaly J, Israili ZH, Lyoussi B (2008) Acute and sub-chronic toxicity of an aqueous extract of the leaves of Herniaria glabra in rodents. J Ethnopharmacol 118: 378-386.

Sun W, Zeng C, Yue D, Liu S, Ren Z, Zuo Z, Deng J, Peng G, Hu Y (2019) Ageratina adenophora causes spleen toxicity by inducing oxida-tive stress and pyroptosis in mice. R Soc Open Sci 6: 190127.
Go to article

Authors and Affiliations

X.L. Gu
1
F.Y. Dai
1
X. Xiao
1
G.Z. Li
2
L.M. Zhang
1
W.J. Qu
1

  1. College of Veterinary Medicine, Yunnan Agricultural University, Jin Hei Road No.65, Panlong District, 650051, Kunming, P.R. China
  2. College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, P.R. China
Download PDF Download RIS Download Bibtex

Abstract

Background: The histology of the lung includes a variety of cell types. Fibrosis is a universal process, occurring in the skin, intestine, heart, muscles, kidney, blood vessels, liver, and also the lungs. Telocytes are a type of cells with a wide range of properties, which were previously described in healthy and disease-affected organs of human and animal organisms.

Aim: This study aimed to identify telocytes in the lungs of rats and discuss their possible role in the development of pulmonary fibrosis.

Methods: Tissue samples were taken from a group of ten male Wistar rats. Further histological and immunohistochemical analysis was performed. Double immunolabeling for c-kit, vimentin, CD34, and PDGFRα has revealed telocytes in the lungs.

Results: In all tissue samples, telocytes have been identified (in the area of interalveolar septa, close to blood vessels, and between the airway epithelium).

Conclusion: Telocytes might be directly and indirectly (through contact with stem cells, secretomes, and reduction in number) involved in the development of pulmonary fibrosis. The heterogeneity of the telocyte population in different pathologies and their subtypes, as well as their tendency to be common stress their important role in pathological physiology.
Go to article

Bibliography

1. Schraufnagel D.E.: Electron microscopy of the lung. New York: Marcel Dekker, CRC Press; 1990.
2. Hogan B., Tata P.R.: Cellular organization and biology of the respiratory system. Nat Cell Biol. 2019. https://doi.org/10.1038/s41556-019-0357-7.
3. Evren E., Ringqvist E., Willinger T.: Origin and ontogeny of lung macrophages: from mice to humans. Immunology. 2020; 160 (2): 126–138.
4. Awad M., Gaber W., Ibrahim D.: Onset of Appearance and Potential Significance of Telocytes in the Developing Fetal Lung. Microsc Microanal. 2019; 25 (5): 1246–1256.
5. Popescu L.M., Gherghiceanu M., Suciu L.C., Manole C.G., Hinescu M.E.: Telocytes and putative stem cells in the lungs: electron microscopy, electron tomography and laser scanning microscopy. Cell Tissue Res. 2011; 345 (3): 391–403.
6. Aleksandrovych V., Pasternak A., Basta P., Sajewicz M., Walocha J.A., Gil K.: Telocytes: facts, speculations and myths (Review article). Folia Med Cracov. 2017; 57 (1): 5–22.
7. Zheng Y., Li H., Manole C.G., Sun A., Ge J., Wang X.: Telocytes in trachea and lungs. J Cell Mol Med. 2011; 15: 2262–2268.
8. Aleksandrovych V., Walocha J.A., Gil K.: Telocytes in female reproductive system (human and animal). J Cell Mol Med. 2016; 20 (6): 994–1000.
9. Díaz-Flores L., Gutiérrez R., Díaz-Flores L.J.R., Goméz M.G., Sáez F.J., Madrid J.F.: Behaviour of telocytes during physiopathological activation. Semin Cell Dev Biol. 2016; 55: 50–61.
10. Hussein M.M., Mokhtar D.M.: The roles of telocytes in lung development and angiogenesis: An immunohistochemical, ultrastructural, scanning electron microscopy and morphometrical study. Dev Biol. 2018; 443 (2): 137–152.
11. Popescu L.M., Faussone-Pellegrini M.S.: TELOCYTES — a case of serendipity: the winding way from interstitial cells of Cajal (ICC), via interstitial Cajal-like cells (ICLC) to TELOCYTES. J Cell Mol Med. 2010; 14: 729–740.
12. Ibba-Manneschi L., Rosa I., Manetti M.: Telocyte implications in human pathology: An overview. Biol. 2016; 55: 62–69.
13. Liao Z., Chen Y., Duan C., Zhu K., Huang R., Zhao H., et al.: Cardiac telocytes inhibit cardiac microvascular endothelial cell apoptosis through exosomal miRNA-21-5p-targeted cdip1 silencing to improve angiogenesis following myocardial infarction. Theranostics. 2021; 11 (1): 268–291.
14. Zhaofu L., Dongqing C.: Cardiac Telocytes in Regeneration of Myocardium After Myocardial Infarction. Adv Exp Med Biol. 2016; 913: 229–239.
15. Milia A.F., Ruffo M., Manetti M., Rosa I., Conte D., Fazi M., et al.: Telocytes in Crohn’s disease. Cell Mol Med. 2013; 17 (12): 1525–1536.
16. Ibba-Manneschi L., Rosa I., Manetti M.: Telocytes in Chronic Inflammatory and Fibrotic Diseases. Adv Exp Med Biol. 2016; 913: 51–76.
17. Wolnicki M., Aleksandrovych V., Gil A., Pasternak A., Gil K.: Relation between ureteral telocytes and the hydronephrosis development in children. Folia Med Cracov. 2019; 59 (3): 31–44.
18. Aleksandrovych V., Pasternak A., Gil K.: Telocytes in the architecture of uterine fibroids. Folia Med Cracov. 2019; 59 (4): 33–44.
19. Aleksandrovych V., Białas M., Pasternak A., Bereza T., Sajewicz M., Walocha J., et al.: Identification of uterine telocytes and their architecture in leiomyoma. Folia Med Cracov. 2018; 58 (3): 89–102.
20. Manole C.G., Gherghiceanu M., Simionescu O.J.: Telocyte dynamics in psoriasis. Cell Mol Med. 2015; 19 (7): 1504–1519.
21. Jin L., Wang Z., Qi X.: Diffuse idiopathic pulmonary neuroendocrine cell hyperplasia: Case series and a review of the literature. Medicine (Baltimore). 2018; 97 (52): e13806.
22. Leuenberger P.: [Clinical importance of non-respiratory functions of the lung]. Schweiz Med Wochenschr. 1983; 113 (29): 1006–1010.
23. Wittmann J.: [Respiratory and non-respiratory functions of the lung]. Tierarztl Prax Suppl. 1987; 2: 33–36.
24. Aleksandrovych V., Kurnik-Łucka M., Bereza T., Białas M., Pasternak A., Cretoiu D., Walocha J.A., Gil K.: The Autonomic Innervation and Uterine Telocyte Interplay in Leiomyoma Formation. Cell Transplant. 2019; 28: 619–629.
25. Song D., Cretoiu D., Cretoiu S.M., Wang X.: Telocytes and lung disease. Histol Histopathol. 2016; 31 (12): 1303–1314.
26. Shi L., Dong N., Chen C., Wang X.: Potential roles of telocytes in lung diseases. Semin Cell Dev Biol. 2016; 55: 31–39.
27. Ciechanowicz A.: Stem Cells in Lungs. Adv Exp Med Biol. 2019; 1201: 261–274.
28. Rokicki W., Rokicki M., Wojtacha J., Dżeljijli A.: The role and importance of club cells (Clara cells) in the pathogenesis of some respiratory diseases. Kardiochir Torakochirurgia Pol. 2016; 13 (1): 26–30.
29. Ibba-Manneschi L., Rosa I., Manetti M.: Telocytes in Chronic Inflammatory and Fibrotic Diseases. Adv Exp Med Biol. 2016; 913: 51–76.
Go to article

Authors and Affiliations

Anna Gil
1
Veronika Aleksandrovych
1

  1. Department of Pathophysiology, Jagiellonian University Medical College, Kraków, Poland
Download PDF Download RIS Download Bibtex

Abstract

A moving average (MA) is a commonly used noise reduction method in signal processing. Several studies on wheeze auscultation have used MA analysis for preprocessing. The present study compared the performance of MA analysis with that of differential operation (DO) by observing the produced spectrograms. These signal preprocessing methods are not only applicable to wheeze signals but also to signals produced by systems such as machines, cars, and flows. Accordingly, this comparison is relevant in various fields. The results revealed that DO increased the signal power intensity of episodes in the spectrograms by more than 10 dB in terms of the signal-to-noise ratio (SNR). A mathematical analysis of relevant equations demonstrated that DO could identify high-frequency episodes in an input signal. Compared with a two-dimensional Laplacian operation, the DO method is easier to implement and could be used in other studies on acoustic signal processing. DO achieved high performance not only in denoising but also in enhancing wheeze signal features. The spectrograms revealed episodes at the fourth or even fifth harmonics; thus, DO can identify high-frequency episodes. In conclusion, MA reduces noise and DO enhances episodes in the high-frequency range; combining these methods enables efficient signal preprocessing for spectrograms.
Go to article

Authors and Affiliations

Meng-Lun Hsueh
1
Jin-Peng Chen
2
Bing-Yuh Lu
2
Huey-Dong Wu
3
Pei-Yi Liu
2

  1. Graduate Institute of Intelligent Robotics, Hwa Hsia University of Technology, New Taipei City, Taiwan
  2. Faculty of Automation, Guangdong University of Petrochemical Technology, Guangdong, China
  3. Department of Integrated Diagnostics and Therapeutics, National Taiwan University Hospital, Taipei, Taiwan
Download PDF Download RIS Download Bibtex

Abstract

The possibility of a normal distribution indicates that few particles are in the same phase during a breath and their reflections can be observed on the chest wall, then a few explosive waves with relatively large power occurr occasionally. Therefore, the one-cycle sine wave which is simulated as a single burst of the explosive effect phenomenon penetrates through the chest wall and was analysed to explore the reason of the crackle sounds. The results explain the differences between the definitions of crackle proposed by Sovijärvi et al. (2000a). The crackles in the lungs were synthesised by a computer simulation. When the coarse crackles occur, the results indicate that higher burst frequency carriers (greater than 100 Hz) directly penetrate the bandpass filter to simulate the chest wall. The simulated coarse crackle sounds were low pitched, with a high amplitude and long duration. The total duration was greater than 10 ms. However, for a lower frequency carrier (approximately 50 Hz), the fundamental frequency component was filtered out. Therefore, the second harmonic component of the lower frequency carrier, i.e., the fine crackle, penetrated the chest wall. Consequently, it is very possible that the normal lung sounds may contain many crackle-shaped waves with very small amplitudes because of the filtering effects of the chest wall, environment noises, electric devices, stethoscopes, and human ears, the small crackles disappear in the auscultations. In addition, our study pointed out that some unknown crackles of the very low frequency under the bandwidth of the human ears cannot penetrate the airways and be detected by medical doctors. Therefore, it might be necessary to focus advanced electronic instrumentation on them in order to analyse their possible characteristics for diagnosis and treatment of the respiration system.
Go to article

Authors and Affiliations

Bing-Yuh Lu
1 2
Meng-Lun Hsueh
3
Huey-Dong Wu
4

  1. Faculty of Automation, Guangdong University of Petrochemical Technology, No. 139, Sec. 2, Guando Road, Maoming City, Guangdong 525000, China
  2. Department of Electronic Engineering, Tungnan University, No. 152, Sec. 3., BeiShen Rd., ShenKeng Dist., New Taipei City 22202, Taiwan (R.O.C.)
  3. Department of Electronic Engineering, Hwa Hsia University of Technology, No. 111, Gongzhuan Rd., Zhonghe Dist., New Taipei City 235, Taiwan (R.O.C.)
  4. Section of Respiration Therapy, Department of Integrated Diagnostics and Therapeutics, National Taiwan University Hospital, No. 7, Zhongshan S. Rd., Zhongzheng Dist., Taipei City 100, Taiwan (R.O.C.)
Download PDF Download RIS Download Bibtex

Abstract

Mechanical ventilation (MV) is a supportive and life-saving therapy, however, it can cause ventilator-induced lung injury as a common complication. Thus, recruitment manoeuvres (RM) are applied to open the collapsed alveoli to ensure sufficient alveolar surface area for gas exchange. In the light of the fact that positive pressure ventilation is currently the standard treat- ment for improving pulmonary function, extrathoracic negative pressure is considered as an alter- native form of respiratory support. The aim of this study was to estimate the proinflammatory and oxidative response during MV and lung injury as well as the response after RM. All studied parameters were assessed at the following time points: T1-spontaneous breathing, T2- MV, T3- lung injury, T4 –RM. During MV (T2) elastase, MPO, ALP release, nitrite and superoxide generation significantly increased, whereas in later measurements a decrease in these values was noted. The MDA plasma concentration significantly (p<0.05) increased at T2, reaching a level of 13.30±0.87 nmol/ml; at other time points the values obtained were similar to the baseline value of 9.94±0.94 nmol/ml, whereas a gradual decrease in SOD activity at time T2-T4 points in comparison with the baseline value was found. During the study both neutrophil activity and oxi- dative stress indicate exacerbated response after MV and lung injury by bronchoalveolar lavage; however, extrathoracic negative pressure system as the MR ameliorates damaging changes which could further lead to serious lung injury.

Go to article

Authors and Affiliations

J. Wessely-Szponder
T. Szponder
A. Fijalkowska-Nestorowicz
R. Bobowiec
A. Sobczyńska
Download PDF Download RIS Download Bibtex

Abstract

This study aimed to develop an equine-derived hyperimmune serum against SARS-CoV-2 and evaluate its efficacy as a potential immunotherapy tool for the treatment of known and potential variants of COVID-19 in preclinical trials.
The novelty of this study is the whole virus and ALUM gel adjuvant formula. The horses were immunized using a whole inactivated SARS-CoV-2 antigen, and the final purified hyperimmune serum showed high plaque reduction neutralization (PRNT 50) neutralizing titers. The efficacy of the hyperimmune serum was evaluated histopathologically and biochemically in the lungs, hearts, and serum of K18 hACE2 transgenic mice (n=45), which is an accepted model organism for SARS-CoV-2 studies and was challenged with live SARS-CoV-2.
Serum treatment improved the general condition, resulting in lower levels of proinflammatory cytokines in the blood plasma, as well as reduced viral RNA titers in the lungs and hearts. Additionally, it reduced oxidative stress significantly and lessened the severity of interstitial pneumonia in the lungs when compared to infected positive controls.
The study concluded that equine-derived anti-SARS-CoV-2 antibodies could be used for COVID-19 prevention and treatment, especially in the early stages of the disease and in combination with antiviral drugs and vaccines. This treatment will benefit special patient populations such as immunocompromised individuals, as specific antibodies against SARS-CoV-2 can neutralize the virus before it enters host cells. The rapid and cost-effective production of the serum allows for its availability during the acute phase of the disease, making it a critical intervention in preventing the spread of the disease and saving lives in new variants where a vaccine is not yet developed.
Go to article

Bibliography

1. Botosso VF, Jorge SAC, Astray RM, Guimaraes AMS, Mathor MB, Carneiro PS, Durigon EL, Covas D, Oliveira DBL, Oliveira RN, Maria DA, Eto SF, Gallina NMF, Pidde G, Squaiella-Baptistão CS, Silva DT, Villas-Boas IM, Fernandes DC, Auada AVV, Banari AC, Filho AFS, Bianconi C, Utescher CLA, Oliveira DCA, Mariano DOC, Barbosa FF, Rondon G, Kapronezai J, Silva J G, Goldfeder MB, Comone P, Junior REC, Pereira TTS, Wen FH, Tambourgi DV, Chudzinski-Tavassi AM (2022) Anti-SARS-CoV-2 equine F (Ab′)2 immunoglobulin as a possible therapy for COVID-19. Sci Rep 12: 3890.
2. De Vito A, Colpani A, Saderi L, Puci M, Zauli B, Fiore V, Fois M, Meloni MC, Bitti A, Di Castri C, Maida I, Babudieri S, Sotgiu G, Madeddu G. (2022) Impact of early SARS-CoV-2 antiviral therapy on disease progression. Viruses 15: 71.
3. Dong W, Mead H, Tian L, Park JG, Garcia JI, Jaramillo S, Barr T, Kollath DS, Coyne VK, Stone NE, Jones A, Zhang J, Li A, Wang LS, Milanes-Yearsley M, Torrelles JB, Martinez-Sobrido L, Keim PS, Barker BM, Caligiuri MA, Yu J (2022) The K18-Human ACE2 transgenic mouse model recapitulates non-severe and severe COVID-19 in response to an infectious dose of the SARS-CoV-2 virus. J Virol: e0096421.
4. Golden JW, Cline CR, Zeng X, Garrison AR, Carey BD, Mucker EM, White LE, Shamblin JD, Brocato RL, Liu J, Babka AM, Rauch HB, Smith JM, Hollidge BS, Fitzpatrick C, Badger CV, Hooper JW (2020) Human angiotensin-converting enzyme 2 transgenic mice infected with SARS-CoV-2 develop severe and fatal respiratory disease. JCI Insight 5: e142032.
5. Jha A, Barker D, Lew J, Manoharan V, Kessel JV, Haupt R, Toth D, Frieman M, Falzarano D, Kodihalli S (2022) Efficacy of COVID-HIGIV in animal models of SARS-CoV-2 infection. Sci Rep 12: 16956.
6. León G, Herrera M, Vargas M, Arguedas M, Sánchez A, Segura A, Gómez A, Solano G, Aguilar E C, Risner K, Narayanan A, Bailey C, Villalta M, Hernández A, Sánchez A, Cordero D, Solano D, Durán G, Segura E, Cerdas M, Umaña D, Moscoso E, Estrada R, Gu-tiérrez J, Méndez M, Castillo AC, Sánchez L, Sánchez R, Gutiérrez JM, Díaz C, Alape A (2021) Development and characterization of two equine formulations towards SARS-CoV-2 proteins for the potential treatment of COVID-19. Sci Rep 11: 9825.
7. Li E, Han Q, Bi J, Wei S, Wang S, Zhang Y, Liu J, Feng N, Wang T, Wu J, Yang S, Zhao Y, Liu B, Yan F, Xia X (2023) Therapeutic equine hyperimmune antibodies with high and broad-spectrum neutralizing activity protect rodents against SARS-CoV-2 infection. Front Immunol 14: 1066730.
8. Luis Eduardo Cunha, Stolet AA, Strauch MA, Pereira VAR, Dumard CH, Gomes AMO, Souza PNC, Fonseca JG, Pontes FE, Meirelles LGR, Albuquerque JWM, Sacramento CQ, Rodrigues NF, Lima TM, Alvim RGF, Marsili FF, Caldeira MM, Higa LM, Monteiro FL, Zingali RB, Oliveira GAP, Souza TML, Tanuri A, Oliveira AC, Guedes H L M, Castilho L R , Silva J L (2020) Potent neutralizing equine antibodies raised against recombinant SARS-CoV-2 spike protein for COVID-19 passive immunization therapy. Cold Spring Harbor Laboratory, bioRxiv 17: 254375
9. Maccio U, Zinkernagel AS, Shambat SM, Zeng X, Cathomas G, Ruschitzka F, Schuepbach RA, Moch H, Varga Z. SARS-CoV-2 (2021) Leads to a small vessel endotheliitis in the heart. EBioMedicine 63: 103182.
10. Moreira-Soto A, Arguedas M, Brenes H, Buján W, Corrales-Aguilar E, Díaz C, Echeverri A, Flores-Díaz M, Gómez A, Hernández A, Herrera M, León G, Macaya R, Kühne A, Molina-Mora JA, Mora J, Sanabria A, Sánchez A, Sánchez L, Segura Á, Segura E, Solano D, Soto C, Stynoski JL, Vargas M, Villalta M, Reusken CBEM, Drosten C, Gutiérrez JM, Alape-Girón A, Drexler JF (2021) High efficacy of therapeutic equine hyperimmune antibodies against SARS-CoV-2 variants of concern. Frontiers in Medicine. 8: 735853.
11. Onen EA, Sonmez K, Yildirim F, Demirci EK, Gurel A (2022) Development, analysis, and preclinical evaluation of inactivated vaccine candidate for prevention of Covid-19 disease. All Life 15: 771-793.
12. Pan X, Zhou P, Fan T, Wu Y, Zhang J, Shi X, Shang W, Fang L, Jiang X, Shi J, Sun Y, Zhao S, Gong R, Chen Z, Xiao G (2020) Im-munoglobulin fragment F(ab’)2 against RBD potently neutralizes SARS-CoV-2 in vitro. Antiviral Res 182: 104868.
13. Schoell A, Heyde B, Weir D, Po-Chang C, Yiding H, Tung D (2009) Euthanasia method for mice in rapid time-course pulmonary. Pharmacokinetic Studies 48: 506.
14. Suvarna KS, Layton C, Bancroft JD (2018) Bancroft’s theory and practice of histological techniques E-Book. Elsevier health sciences, Philadelphia, pp 286-291.
15. Winkler ES, Bailey AL, Kafai NM, Nair S, McCune BT, Yu J, Fox JM, Chen RE, Earnest JT, Keeler SP, Ritter JH, Kang L, Dort S, Robichaud A, Head R, Holtzman MJ, Diamond MS (2020) SARS-CoV-2 infection of human ACE2-transgenic mice causes severe lung inflammation and impaired function. Nat Immunol 21: 1327-1335.
16. Xu J, Xu X, Jiang L, Dua K, Hansbro PM, Liu G (2020) SARS-CoV-2 induces transcriptional signatures in human lung epithelial cells that promote lung fibrosis. Respir Res 21: 182.
17. Yu P, Deng W, Bao L, Qu Y, Xu Y, Zhao W, Han Y, Qin C (2022) Comparative pathology of the nasal epithelium in K18-hACE2 Tg mice, hACE2 Tg mice, and hamsters infected with SARS-CoV-2. Vet Pathol 59: 602-612.
18. Zhang Q, Wang Y, Qi C, Shen L, Li J (2020) Clinical trial analysis of 2019-nCoV therapy registered in China. J Med Virol 92: 540-545.

Go to article

Authors and Affiliations

E.A. Onen
1
E.K. Demirci
2

  1. Kocak Pharmaceutical Company, Biotechnology and Vaccine R&D, Tekirdag, Turkey
  2. Histology and Embryology Department, Istanbul Faculty of Medicine,Istanbul University, Istanbul, Turkey

This page uses 'cookies'. Learn more