Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 2
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

The Goss texture is a characteristic feature of grain-oriented transformer steel sheets. Generator sheets, which are produced as non-oriented steel sheets, should have isotropic features. However, measurement results of generator sheets, confirmed by crystallographic studies, indicate that these sheets are characterized by certain, quite significant anisotropy. The first purpose of this paper is to present the influence of textures of generator and transformer steel sheets on their magnetization characteristics. The second aim is to propose a method which takes into account the sheet textures in the calculations of magnetization curves. In calculations of magnetization processes in electrical steel sheets, models in which the plane of a sheet sample is divided into an assumed number of specified directions are used. To each direction a certain hysteresis loop, the so-called direction hysteresis, is assigned. The parameters of these direction hystereses depend, among other things, on the texture type in these steel sheets. This paper discusses the method which calculates the parameters of these direction hystereses taking into account the given sheet texture. The proposed method gives a possibility of determining the magnetization characteristics for any direction of the field intensity changes.

Go to article

Authors and Affiliations

Witold Mazgaj
Adam Warzecha
Download PDF Download RIS Download Bibtex

Abstract

An algorithm of determination of mechanical stresses and deformations of the magnetic circuit shape, caused by forces of magnetic origin, is presented in this paper. The mechanical stresses cause changes of magnetizing characteristics of the magnetic circuit. The mutual coupling of magnetic and mechanical fields was taken into account in the algorithm worked out. A computational experiment showed that it was possible to include the interaction of both fields into one numerical model. The elaborated algorithm, taking into account the impact of mechanical stresses on magnetic parameters of construction materials, can be used in both the 2D and the 3D type field-model.

Go to article

Authors and Affiliations

Paweł Idziak
Krzysztof Kowalski

This page uses 'cookies'. Learn more