Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 4
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

The clinical issues related to the anatomical variation of the mandibular canal have been extensively analyzed since the 19th century. Evolving dentistry techniques and advancements in the prosthetics forced to collect detailed information about anatomical variations of the mandibular canal due to its neurovascular content. Therefore, its radiographic imaging became an essential part of the oral surgery, in order to avoid complications resulted from an accidental damage of the mandibular canal.
Go to article

Authors and Affiliations

Janusz Skrzat
1
Wojciech Ryniewicz
2
Grzegorz Goncerz
1
Magdalena Kozerska
1

  1. Department of Anatomy, Faculty of Medicine, Jagiellonian University Medical College, Kraków, Poland
  2. Department of Prosthodontics and Orthodontics, Institute of Dentistry, Faculty of Medicine, Jagiellonian University Medical College, Kraków, Poland
Download PDF Download RIS Download Bibtex

Abstract

The paper aims was assessing risks of mandible fractures consequent to impacts or sport accidents. The role of the structural stiffness of mandible, related to disocclusion state, was evaluated using the finite element method. It has been assumed, that the quasi-static stress field, due to distributed forces developed during accidents, could explain the common types of mandibular fractures. Mandibular condyles were supposed jammed in the maxillary fossae. The force of 700 N, simulating an impact on mandible, has been sequentially applied in three distinct areas: centrally, at canine zone and at the mandibular angle. Clinically most frequent fractures of mandible were recognized through the analysis of maximal principal stress/strain fields. It has been shown that mandibular fracture during accidents can be analyzed at satisfactory level using linear quasi-static models for designing protections.

Go to article

Authors and Affiliations

J. Żmudzki
G. Chladek
K. Panek
P. Lipiński
Download PDF Download RIS Download Bibtex

Abstract

This study was carried out to determine the morphometric and volumetric features of the mandible in Van cats by using computed tomography (CT) and a three-dimensional (3D) software program. The study also aimed at presenting the biometrical differences of these mea- surements between genders. A total of 16 adult Van cats (8 males, 8 females) were used in the study. The cats were anesthetized using a ketamine-xylazine combination. They were then scanned using CT under anesthesia and their images were obtained. The scanned images of the mandible in each cat were used for the reconstruction of a 3D model by using the MIMICS 20.1 (The Materialise Group, Leuven, Belgium) software program. Later, morphometric (17 parame- ters), volumetric, and surface area measurements were conducted and statistical analyses were carried out. In our morphometric measurements, it was found that TLM (total length of the mandible), PCD (pogonion to coronoid process distance), CAP (length from the indenta- tion between the condyle process and angular process to pogonion), CAC (length from the inden- tation between the condyle process and the angular process to back of alveole C1), CML (length between C1 - M1), RAH (ramus height), MDM (mandible depth at M1), MHP (height of the mandible in front of P3), and ABC (angular process to back of alveole C1 distance) were greater in male cats; while MWM (mandible width at M1 level) was greater in female cats and was statistically significant (p<0.05). The length and height of the mandible were 6.36±2.42 cm and 3.01±1.81 cm in male cats, respectively. On the other hand, in female cats, the length and height of the mandible were 5.89±2.57 cm and 2.71±1.26 cm, respectively. The volume of the mandible was measured to be 7.39±0.93 cm3 in male cats and 5.40±0.49 cm3 in female cats. The surface areas were 63.50±5.27 cm2 in male cats and 52.73±3.89 cm2 in female cats. In con- clusion, in this study, basic morphometric parameters of the mandible in adult Van cats were found by using CT and a 3D modeling program. The differences between male and female cats were also determined in the study.
Go to article

Authors and Affiliations

O. Yilmaz
1
İ. Demircioglu
2

  1. Department of Anatomy, Faculty of Veterinary Medicine, Van Yuzuncu Yil University, 65080, Van, Turkey
  2. Department of Anatomy, Faculty of Veterinary Medicine, Harran University, 63200, Şanlıurfa, Turkey
Download PDF Download RIS Download Bibtex

Abstract

Medical applications of additive manufacturing have seen a significant growth in recent years due to availability of advanced medical imaging and design software and wide range of materials. The range of additively manufactured medical implants is growing rapidly and surgeons need to keep themselves updated with state-of-the-art of the technology. This article reviews several articles related to medical implants to help surgeons and researchers to stay up-to-date on recent developments in the domain. Additively manufactured medical implants are reviewed into five categories: orthopedic implants, dental implants, cranioplasty implants, scaffold implants for tissue engineering and other medical implants including chest wall reconstructive implants, anti-migration enhanced tracheal stents, and buccopharyngeal stents. Additive manufacturing process and material for fabrication of each type of implant are highlighted in the study. It has been observed that titanium alloy is a suitable material for cementless arthroplasty. Porosity in the implants supports bone ingrowth, which results in a significant reduction in stress shielding. Additive manufacturing has a very attractive future in medical implant fabrication due to its capability to produce complex and customized implants. The AM provides freedom to researcher to explore the complex design of medical implants for better bone regeneration and improved osseointegration.
Go to article

Authors and Affiliations

Hari Narayan Singh
1
ORCID: ORCID
Sanat Agrawal
1
ORCID: ORCID
Yashwant Kumar Modi
2
ORCID: ORCID

  1. Department of Mechanical Engineering, National Institute of Technology, Uttarakhand, India
  2. Department of Mechanical Engineering, Jaypee University of Engineering and Technology, Guna, India

This page uses 'cookies'. Learn more