Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 3
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

The paper provides an overview of selected scientific articles presenting research carried out in recent years on methods for producing autoclaved aerated concrete. Traditional technologies are briefly presented, together with innovative solutions for the production of low-density and ultra-lowdensity materials. In addition to the presentation of the manufacturing methods themselves, the results of research into the properties of the autoclaved aerated concrete obtained and their dependence on the technology used are also presented. A subjective selection and review of articles covering research into the thermal conductivity of concrete, the technological factors influencing them and the ways in which they can be shaped was also carried out. A significant number of the cited articles do not function in the world scientific circulation due to the language barrier (they are mainly in Ukrainian). In the meantime, they contain interesting research results which can inspire further research into the issues discussed concerning the production technology and the thermal and strength properties of autoclaved aerated concrete, with particular emphasis on lightweight and ultra-lightweight concrete.
Go to article

Authors and Affiliations

Yaroslav Yakymechko
1
ORCID: ORCID
Roman Jaskulski
2
ORCID: ORCID
Maciej Banach
2
ORCID: ORCID
Piotr Perłowski
2
ORCID: ORCID

  1. Lviv Polytechnic National University, Institute of Chemistry and Chemical Technologies, Bandera str. 13, Lviv, Ukraine
  2. Warsaw University of Technology, Faculty of Civil Engineering Mechanics and Petrochemistry, ul. Łukasiewicza 17, 09-400 Płock, Poland
Download PDF Download RIS Download Bibtex

Abstract

Industry 4.0 is expected to provide high quality and customized products at lower costs by increasing efficiency, and hence create a competitive advantage in the manufacturing industry. As the emergence of Industry 4.0 is deeply rooted in the past industrial revolutions, Advanced Manufacturing Technologies of Industry 3.0 are the precursors of the latest Industry 4.0 technologies. This study aims to contribute to the understanding of technological evolution of manufacturing industry based on the relationship between the usage levels of Advanced Manufacturing Technologies and Industry 4.0 technologies. To this end, a survey was conducted with Turkish manufacturers to assess and compare their manufacturing technology usage levels. The survey data collected from 424 companies was analyzed by machine learning approach. The results of the study reveal that the implementation level of each Industry 4.0 technology is positively associated with the implementation levels of a set of Advanced Manufacturing Technologies.
Go to article

Authors and Affiliations

Tuğba Sari
1

  1. Konya Food and Agriculture University, Department of Management Information Systems, Turkey
Download PDF Download RIS Download Bibtex

Abstract

In the era of smart manufacturing and Industry 4.0, the rapid development of modelling in production processes results in the implementation of new techniques, such as additive manufacturing (AM) technologies. However, large invest-ments in the devices in the field of AM technologies require prior analysis to identify the possibilities of improving the production process flow. This paper proposes a new approach to determine and optimize the production process flow with improvements made by the AM technologies through the application of the Petri net theory. The existing produc-tion process is specified by a Petri net model and optimized by AM technology. The modified version of the system is verified and validated by the set of analytic methods safeguarding against the formal errors, deadlocks, or unreachable states. The proposed idea is illustrated by an example of a real-life production process.
Go to article

Authors and Affiliations

Justyna Patalas-Maliszewska
1
ORCID: ORCID
Remigiusz Wiśniewski
2
ORCID: ORCID
Marcin Topczak
1
ORCID: ORCID
Marcin Wojnakowski
2
ORCID: ORCID

  1. Institute of Mechanical Engineering, University of Zielona Góra, Szafrana 4, 65-516 Zielona Góra, Poland
  2. Institute of Control & Computation Engineering, University of Zielona Góra, Szafrana 2, 65-516 Zielona Góra, Poland

This page uses 'cookies'. Learn more