Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 27
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

The main objective of these experiments was to study the oxygen mass transfer rate through the volumetric mass transfer coefficient (kLa) for an experimental set-up equipped with a rotating magnetic field (RMF) generator and various liquids. The experimental results indicated that kLa increased along the magnetic strength and the superficial gas velocity. Mathematical correlations defining the influence of the considered factors on kLa were proposed.

Go to article

Authors and Affiliations

Rafał Rakoczy
Maciej Konopacki
Marian Kordas
Radosław Drozd
Karol Fijałkowski
Download PDF Download RIS Download Bibtex

Abstract

The paper presents an investigation of mass transfer in gas-liquid annular flow in a microreactor. The microreactor had a meandered shape with a square cross-section of the channel (292×292 μm, hydraulic diameter 292 μm) and 250 mm in length. The rate of CO2 absorption from the CO2/N2 mixture in NaOH (0.1 M, 0.2 M, 0.7 M, 1.0 M and 1.5 M) water solutions was measured. Two velocities of gas flow and two velocities of liquid flow were used. In two cases a fully developed annular flow at the beginning of the channel was observed, whilst in two cases annular flow was formed only in about 2/3 of the microchannel length. Based on the measurements of CO2 absorption rate, the values of volumetric liquid - side mass transfer coefficients with the chemical reaction were determined. Then physical values of coefficients were found. Obtained results were discussed and their values were compared with the values predicted by literature correlations.

Go to article

Authors and Affiliations

Paweł Sobieszuk
Karolina Napieralska
Download PDF Download RIS Download Bibtex

Abstract

Anti-condensation coatings are widely used in refrigeration, air conditioning and ships technology. They can store a certain amount of water in its own volume, and then return it back in favorable conditions. Anti-condensation coatings are used also to protect structures from the moisture. This paper presents the results of experimental research on heat and mass transfer in an anti-condensation coating under natural and forced convection. Experimental results are obtained for horizontal and inclined plates. Experimental data are compared with different models of computation.
Go to article

Authors and Affiliations

Artur Rusowicz
Andrzej Grzebielec
Download PDF Download RIS Download Bibtex

Abstract

The aim of the paper is to present the hydrodynamic, mass transfer and illumination characteristics of a laboratory helical-tube photobioreactor Biostat PBR-2S, commercially available and used in many laboratories in Poland and worldwide. The investigated hydrodynamics parameters were: mean liquid circulation rate, liquid velocity/residence time in the tubular part of the apparatus and mixing time, measured in the wide range of rotary speed of the circulation pump. The influence of the aeration intensity on these parameters was also checked. The volumetric oxygen and carbon dioxide transfer coefficients in the liquid phase and their dependency on the liquid circulation rate and gas inflow rate were determined. The experiments were performed in tap water and then in a real three-phase cultivation broth at the end of thermophilic cyanobacteria T. synechococus growth. For the final evaluation of the tested PBR there were series of test cultivations run under different conditions of illumination. The highest final concentration of the biomass of tested cyanobacteria reached the relatively high value of 4.38 g/dm3 of the dry biomass, although the process conditions were not fully optimized. The laboratory photobioreactor PBR-2S proved to be a good tool for investigations of microalgae cultivation processes. The presented results and practical observations may help to analyze and understand the mutual influence of the specific process parameters in the described PBR, especially during autotrophic organism cultivations.

Go to article

Authors and Affiliations

Paweł Gluszcz
Anna Klepacz-Smółka
Stanisław Ledakowicz
Download PDF Download RIS Download Bibtex

Abstract

The work motivation was to investigate in vitro system simulating drug release from Drug Eluting Stent (DES). The experiments were conducted in a custom designed unit simulating drug release from polymer covering DES in a simplified way. The active substance diffuses from a thin, internal annular layer of hydrogel (imitating “stent”) to the outer cylindrical layer of hydrogel (“artery wall”) and is at once drifted away by coaxially flowing solution (“blood”). The conducted research proved functionality of the experimental unit. The rate of mass transfer depends considerably on the mass driving force and on the affinity of substance-hydrogel. The volumetric flow rate and liquid viscosity did not affect the process significantly. The effective diffusion coefficient was calculated as a process parameter and then used in the other variants. Diffusion in hydrogel is the mechanism limiting the mass transfer in the examined system. For the first attempt, the diffusive model used in literature was employed. The provided calculations are consistent with experimental data and therefore show that despite its simplifications the model allows to estimate the amount of released substance.
In conclusion, the relative substance mass, changing over time, was estimated in the respective parts of the unit. The prospect of determining the relative mass of the substance appearing in the subsequent parts of the system over time provides the opportunity to adjust the respective process parameters, which will facilitate control over the rate of mass release.
Go to article

Authors and Affiliations

Anna Adach-Maciejewska
1
ORCID: ORCID
Klaudia Kopka
1

  1. Warsaw University of Technology, Faculty of Chemical and Process Engineering, Waryńskiego 1, 00-645 Warsaw, Poland
Download PDF Download RIS Download Bibtex

Abstract

The paper presents key assumptions of the mathematical model which describes heat and mass transfer phenomena in a solar sewage drying process, as well as techniques used for solving this model with the Fluent computational fluid dynamics (CFD) software. Special attention was paid to implementation of boundary conditions on the sludge surface, which is a physical boundary between the gaseous phase - air, and solid phase - dried matter. Those conditions allow to model heat and mass transfer between the media during first and second drying stages. Selection of the computational geometry is also discussed - it is a fragment of the entire drying facility. Selected modelling results are presented in the final part of the paper.
Go to article

Authors and Affiliations

Piotr Krawczyk
Krzysztof Badyda
Download PDF Download RIS Download Bibtex

Abstract

The aim of this work was to investigate the heat and mass transfer during thermal decomposition of a single solid fuel particle. The problem regards the pyrolysis process which occurs in the absence of oxygen in the first stage of fuel oxidation. Moreover, the mass transfer during heating of the solid fuels is the basic phenomenon in the pyrolysis-derived alternative fuels (gas, liquid and solid phase) and in the gasification process which is focused on the generation of syngas (gas phase) and char (solid phase). Numerical simulations concern pyrolysis process of a single solid particle which occurs as a consequence of the particle temperature increase. The research was aimed at an analysis of the influence of particle physical properties on the devolatilization process. In the mathematical modeling the fuel grain is treated as an ideal sphere which consists of porous material (solid and gaseous phase), so as to simplify the final form of the partial differential equations. Assumption that the physical properties change only in the radial direction, reduces the partial derivatives of the angular coordinates. This leads to obtaining the equations which are only the functions of the radial coordinate. The model consists of the mass, momentum and energy equations for porous spherical solid particle heated by the stream of hot gas. The mass source term was determined in the wide range of the temperature according to the experimental data. The devolatilization rate was defined by the Arrhenius formula. The results of numerical simulation show that the heating and devolatilization time strongly depend on the physical properties of fuel. Moreover, proposed model allows to determine the pyrolysis process direction, which is limited by the equilibrium state.

Go to article

Authors and Affiliations

Izabela Wardach-Święcicka
Dariusz Kardaś
Download PDF Download RIS Download Bibtex

Abstract

Gas-liquid microreactors find an increasing range of applications both in production, and for chemical analysis. The most often employed flow regime in these microreactors is Taylor flow. The rate of absorption of gases in liquids depends on gas-side and liquid-side resistances. There are several publications about liquid-side mass transfer coefficients in Taylor flow, but the data about gas-side mass transfer coefficients are practically non existent. We analysed the problem of gas-side mass transfer resistance in Taylor flow and determined conditions, in which it may influence the overall mass transfer rate. Investigations were performed using numerical simulations. The influence of the gas diffusivity, gas viscosity, channel diameter, bubble length and gas bubble velocity has been determined. It was found that in some case the mass transfer resistances in both phases are comparable and the gas-side resistance may be significant. In such cases, neglecting the gas-side coefficient may lead to errors in the experimental data interpretation.

Go to article

Authors and Affiliations

Ryszard Pohorecki
Paweł Sobieszuk
Filip Ilnicki
Download PDF Download RIS Download Bibtex

Abstract

Electroflotation is used in the water treatment industry for the recovery of suspended particles. In this study the bubble formation and release of hydrogen bubbles generated electrolytically from a platinum cathode was investigated. Previously, it was found that both the growth rate and detachment diameter increased with increasing wire diameter. Conversely, current density had little effect on the released bubble size. It was also found that the detached bubbles rapidly increased in volume as they rose through the liquid as a result of decreasing hydrostatic pressure and high levels of dissolved hydrogen gas in the surrounding liquid. The experimental system was computationally modelled using a Lagrangian-Eulerian Discrete Particle approach. It was revealed that desorption of gaseous solutes from the electrolyte solution, other than hydrogen, may have a significant impact on the diameter variation of the formed bubbles. The simulation confirmed that liquid circulation, either forced or induced by the rising bubble plume, influences both the hydrogen supersaturation (concentration) in the neighbourhood of the electrode and the size of the resulting bubbles.

Go to article

Authors and Affiliations

Shahjahan K. A. Sarkar
Piotr M. Machniewski
Geoffrey M. Evans
Download PDF Download RIS Download Bibtex

Abstract

In this work a concept of energetic efficiency of mixing is presented and discussed; a classical definition of mixing efficiency is modified to include effects of the Schmidt number and the Reynolds number. Generalization to turbulent flows is presented as well. It is shown how the energetic efficiency of mixing as well as efficiencies of drop breakage and mass transfer in twophase liquid-liquid systems can be identified using mathematical models and test chemical reactions. New expressions for analyzing efficiency problem are applied to identify the energetic efficiency of mixing in a stirred tank, a rotor stator mixer and a microreactor. Published experimental data and new results obtained using new systems of test reactions are applied. It has been shown that the efficiency of mixing is small in popular types of reactors and mixers and thus there is some space for improvement.

Go to article

Authors and Affiliations

Magdalena Jasińska
Jerzy Bałdyga
Download PDF Download RIS Download Bibtex

Abstract

Increasing of the efficiency of convective cooling of the inner surface of a short duct by changing its geometry was studied by the use of electrochemical limiting current technique (ELDCT). The duct consisted of seven identical, cylindrical segments. The changes of the duct geometry were obtained by mutual displacement of neighbouring segments, towards the radial direction. Mean values of the mass transfer coefficient for each segment and friction losses for the whole channel were measured for Reynolds numbers spanning the range 7700–35300 at the five values of displacement parameter. The results were used for estimation of cooling efficiency. Recommended values of displacement were determined to point the favourable conditions of heat/mass transfer in the duct. The results may be used, e.g. in the design of heat exchangers and channels for cooling of turbine blades and electronic equipment.

Go to article

Authors and Affiliations

Krzysztof Kiedrzyński
Download PDF Download RIS Download Bibtex

Abstract

The characteristic of nano sized particles mass flux conditions are engaged in this investigation. Here we assume that the nano sized particle flux is zero and the nano sized particle fraction arranged itself on the boundary layer. With this convincing and revised relation, the features of Buongiorno relation on three-dimensional flow of Carreau fluid can be applied in a more efficient way. The governing partial differential equations of continuity, momentum, energy and concentration equations which are transmitted into set of pair of nonlinear ordinary differential equations utilizing similar transformations. The numeric solutions are acquired by engaging the bvp4c scheme, which is a finite-difference code for solving boundary value problems. A parametric study is accomplished to demonstrate the impact of Prandtl number,Weissenberg numbers, radiation parameter, chemical reaction parameter, thermophoresis parameter, Brownian motion parameter and Lewis number on the fluid velocity, temperature and concentration profiles as well skin friction coefficient, Nusselt number and Sherwood number within the boundary layer. From this we find the way in which magnetic parameter contributes to the increase in local skin fraction, and the decrease in the Nusselt and Sherwood numbers in these cases. The effects of the velocity temperature and concentration profile are obtained and presented graphically.

Go to article

Authors and Affiliations

B. Madhusudhana Rao
Degavath Gopal
Naikoti Kishan
Saad Ahmed
Putta Durga Prasad
Download PDF Download RIS Download Bibtex

Abstract

The trend of reducing electricity consumption and environmental protection has contributed to the development of refrigeration technologies based on the thermal effect of adsorption. This article proposes a methodology for conducting numerical simulations of the adsorption and desorption processes. Experimental data available in the literature were used as guidelines for building and verifying the model, and the calculations were carried out using commercial computational fluid dynamics software. The simulation results determined the amount of water vapor absorbed by the adsorbent bed and the heat generated during the adsorption process. Throughout the adsorption process, the inlet water vapor velocity, temperature, and pressure in the adsorbent bed were monitored and recorded. The results obtained were consistent with the theory in the literature and will serve as the basis for further, independent experimental studies. The validated model allowed for the analysis of the effect of cooling water temperature on the sorption capacity of the material and the effect of heating water temperature on bed regeneration. The proposed approach can be useful in analyzing adsorption processes in refrigeration applications and designing heat and mass exchangers used in adsorption systems.
Go to article

Authors and Affiliations

Szymon Janusz
1 2
Maciej Szudarek
3
Leszek Rudniak
4
Marcin Borcuch
2

  1. Cracow University of Technology, Jana Pawla II 37, 31-864 Kraków, Poland
  2. M.A.S. Sp z o.o., Research and Development Department, Składowa 34, 27-200 Starachowice, Poland
  3. Warsaw University of Technology, Institute of Metrology and Biomedical Engineering, sw. Andrzeja Boboli 8, 02-525 Warszawa, Poland
  4. Warsaw University of Technology, Faculty of Chemical and Process Engineering, Warynskiego 1, 00-645 Warszawa, Poland
Download PDF Download RIS Download Bibtex

Abstract

Process intensification is one of the key branches of process engineering. High gravity equipment achieves intensification by substituting gravity with much higher centrifugal force. Rotating Packed Bed is the leading example of high gravity solutions, strongly facilitating gas-liquid mass transfer. However, cylindrical packings come with certain drawbacks, such as dry spots, that can be overcome with new solutions, such as baffle-based packing geometries. However, when baffles are arranged too close to each other, liquid bridges are formed between them, which may lead to decrease in mass transfer efficiency. This work is concerned with improvement of a Zickzack-like internal by the means of visual studies with the use of high-speed camera. According to measured ligament break-up length, two new packings were designed for particular rotational speeds and tested experimentally for effective mass transfer area and wet pressure drop.
Go to article

Authors and Affiliations

Dawid Zawadzki
1
ORCID: ORCID
Małgorzata Majdzik
1
ORCID: ORCID
Ondřej Hájek
2
ORCID: ORCID
Milan Malý
2
ORCID: ORCID
Michał Blatkiewicz
1
ORCID: ORCID

  1. Lodz University of Technology, Faculty of Process and Environmental Engineering, Wolczanska 213, 93-005 Lodz, Poland
  2. Brno University of Technology, Faculty of Mechanical Engineering, Technicka 2, 616-69 Brno, Czech Republic
Download PDF Download RIS Download Bibtex

Abstract

In this paper, the results of the study on aluminium evaporation from the Al-Zn alloys (4.2% weight) during remelting in a vacuum induction furnace (VIM) are presented. The evaporation of components of liquid metal alloys is complex due to its heterogeneous nature. Apart from chemical affinity, its speed is determined by the phenomena of mass transport, both in the liquid and gas phase. The experiments were performed at 10-1000 Pa for 953 K - 1103 K. A significant degree of zinc loss has been demonstrated during the analysed process. The relative values of zinc loss ranged from 4 to 92%. Lowering the pressure in the melting system from 1000 Pa to 10 Pa caused an increase in the value of density of the zinc evaporating stream from 3.82⋅10-5 to 0.000564 g⋅cm-2⋅s-1 at 953 K and 3.32⋅10-5 to 0.000421 g⋅cm-2⋅s-1 for 1103 K. Based on the results of the conducted experiments. it was found that evaporation of zinc was largely controlled by mass transfer in the gas phase and only for pressure 10 Pa this process was controlled by combination of both liquid and gas phase mass transfer.
Go to article

Bibliography

[1] Guo, J., Liu, Y. & Su, Y. (2002). Evaporation of multi-components in Ti-25Al-25Nb melt during induction skull melting process. Transaction of Nonferrous Metals Society of China. 12(4), 587-591.
[2] Blacha, L., Mizera, J. & Folega, P. (2013). The effects of mass transfer in the liquid phase on the rate of aluminium evaporation from the Ti-6Al-7Nb alloy. Metalurgija, 53(1), 51-54.
[3] HSC Chemistry ver. 6.1. Outocumpu Research Oy. Pori.
[4] Plewa, J. (1987). Examples of calculations from the theory of metallurgical processes. Gliwice: Wydawnictwo Politechniki Śląskiej. (in Polish).
[5] Ozberk, E. & Guthrie, R. (1986). A kinetic model for the vacuum refining of inductively stirred copper melts. Metallurgical Transactions B. 17, 87-103.
[6] Nash, P.M. & Steinemann, S.G. (2006). Density and thermal expansion of molten manganese. Iron. Nickel. Copper. Aluminium and Tin by Means of the Gamma-Ray Attenuation Technique. Physics and Chemistry of Liquids, An International Journal. 29(1), 43-58.
[7] Assael, M., Kakosimos, K. & Banish, R. (2006). Reference data for the density and viscosity of liquid aluminum and liquid iron. Journal of Physical and Chemical Reference Data. 35(1), 285-301.
[8] Smalcerz, A., Węcki B. & Blacha L. (2021) Influence of the power of various types of induction furnaces on the shape of the metal bath surface. Advances in Science and Technology Research Journal. 15(3), 34-42. DOI: 10.12913/22998624/138245
[9] Homma, M., Ohno, R., & Ishida, T. (1996). Evaporation of manganese. copper. and tin from molten iron under, vacuum. Science Reports of the Research Institutes, Tohuku University. Series A – Physics. chemistry and metallurgy. 18, 356-365.
[10] Ohno, R. & Ishida, T. (1967). Solution rate of solid iron in liquid copper, ISIJ International. 31(10), 1164-1169.
[11] Chen, X. & Ito, N. (1995). Evaporation rate of copper in high carbon iron melt under reduced pressure. Tetsu-to-Hagane. 81(10), 959-964.
[12] Savov, L. & Janke, D. (2000). Evaporation of cu and sn from induction-stirred iron-based melts treated at reduced pressure. ISIJ International. 40(2), 95-104.
[13] Łabaj, J. (2012). Kinetics of cooper evaporation from the Fe-Cu Alloys under Reduced Pressure. Archives of Metallurgy and Materials. 57(1), 165-172.
[14] Maruyama, T., Katayama, H., Momono, T., Tayu, Y, & Takenouchi, T. (1998). Evaporation rate of copper from molten iron by urea spraying under reduced pressure. Tetsu-to-Hagane. 84(4), 243-248.
[15] Ono-Nakazato, H. & Taguchi, K. (2003). Effect of silicon and carbon on the evaporation rate of copper in molten iron. ISIJ International. 43(11), 1691-169.
[16] Bellot, J.P., Duval, H., Ritchie, M., Mitchell, A. & Ablitzer, D. (2001). Evaporation of Fe and Cr from induction-stirred austenitic stainless steel-influence of the inert gas pressure, ISIJ International. 41(7), 696-705.
[17] Siwiec, G. (2013). The kinetics of aluminium evaporation from the Ti-6Al-4V alloy. Archives of Metallurgy and Materials. 58(4), 1155-1160.
[18] Blacha, L. Golak, S. Jakovics, S. & Tucs A. (2014) Kinetic analysis of aluminum evaporation from Ti-6Al-7Nb. Archives of Metallurgy and Materials. 59, 275-279. DOI: 10.2478/amm-2014-0045.
[19] Blacha, L., Burdzik, R. Smalcerz, A. & Matuła, T. (2013). Effects of pressure on the kinetics of manganese evaporation from the OT4 alloy. Archives of Metallurgy and Materials. 58(1), 197-201.
[20] Harris, R. (1984). Vacuum refining copper melts to remove bismuth, arsenic and antimony. Metallurgical Transaction B. 15, 251-257.
[21] Harris, R., McClincy, R.J. & Riebling, E.F. (1987). Bismuth, arsenic and antimony removal from anode copper via vacuum distillation. Canadian Metallurgical Quarterly. 26(1), 1-4.
[22] Ozberk, B., Guthire, R.I.L. (1987). Vacuum melting of copper evaporation – evaporation of impurities. Proc. 6th Int. Vacuum Metallurgy Conf. American Vacuum Society. San Diego. 248-267.
[23] Machlin, E.S. (1961). Kinetics of vacuum induction refining – theory. the american institute of mining. Metallurgical. and Petroleum Engineers.
[24] Tarapore, E.D. & Evans, J. (1976). Fluid velocities in induction melting furnaces: Part I. Theory and laboratory experiments. Metallurgical Transaction B. 7, 343-351.
[25] Tarapore, E.D., Evans, J. & Langfeld, J. (1977). Fluid velocities in induction melting furnaces: Part II. large scale measurements and predictions. Metallurgical Transaction B. 8, 179-184.
[26] Szekely, J., Chang, W. & Johnson, W. (1977). Experimental measurement and prediction of melt surface velocities in a 30.000 lb inductively stirred melt. Metallurgical Transaction B. 8, 514-517.
[27] Przyłucki, R. Golak, S. Oleksiak, B. & Blacha L. (2012). Influence of an induction furnace's electric parameters on mass transfer velocity In the liquid phase. Metalurgija. 1, 67-70.
[28] Blacha, L. Przylucki, R. Golak, S. & Oleksiak B. (2011). Influence of the geometry of the arrangement inductor - crucible to the velocity of the transport of mass in the liquid metallic phase mixed inductive. Archives of Civil and Mechanical Engineering. 11, 171-179 DOI: 10.1016/S1644-9665(12)60181-2
[29] Du, Y., Chang, Y., Huang, B., Gong, W. & Jin, Z. (2003). Diffusion coefficients of some solutes in fcc and liquid Al: critical evaluation and correlation. Materials Science and Engineering: A. 363(1-2), 140-151.
[30] Harris, R. & Davenport, W.G. (1982). Vacuum distillation of liquid metals: Part I. Theory and experimental study. Metallurgical Transactions B. 13, 581-588.

Go to article

Authors and Affiliations

Albert Smalcerz
ORCID: ORCID
Leszek Blacha
ORCID: ORCID
B. Węcki
1
ORCID: ORCID
D.G. Desisa
2
ORCID: ORCID
J. Łabaj
3
ORCID: ORCID
M. Jodkowski
1
ORCID: ORCID

  1. Department of Testing and Certification "ZETOM", Poland
  2. Department of Industrial, Informatics Silesian University of Technology, Joint Doctorate School, Poland
  3. Faculty of Materials Engineering, Silesian University of Technology, Poland
Download PDF Download RIS Download Bibtex

Abstract

Postharvest processing of grain is an important step in the overall grain production process. It makes possible not only quantitative and qualitative preservation of the harvest, but also ensures maximum profit from its sale at the most favorable market conditions. Convective heat treatment (drying, cooling) guarantees commercial harvest conservation, prevents its loss, and in some cases improves the quality of the finished product. The necessity of intensification and automation of technological processes of postharvest grain processing requires the development of methods of mathematical modeling of energy-intensive processes of convective heat treatment. The determination and substantiation of optimum modes and parameters of equipment operation to ensure the preservation of grain quality is possible only when applying mathematical modeling techniques. In this work, a mathematical model of particulate material drying is presented through a system of differential equations in partial derivatives of which the variable in time and space relationship between heat and mass transfer processes in the material and a drying agent is reflected. The aim of the research was to determine the dynamics of the interrelated fields of unsteady temperature and moisture content of the material and the drying agent on the basis of mathematical models of heat and mass transfer in the layer of particulate material in convective heat approach or heat retraction. The implementation of the mathematical model proposed in the standard mathematical set allows analyzing efficiency of machines and equipment for the convective heat treatment of particulate agricultural materials in a dense layer, according the determinant technological parameters and operating modes.
Go to article

Authors and Affiliations

Boris Kotov
Roman Kalinichenko
Anatoliy Spirin
Download PDF Download RIS Download Bibtex

Abstract

Heat and mass transfer stretched flow of an incompressible, electrically conducting Jeffrey fluid has been studied numerically. Nanoparticles are suspended in the base fluid and it has many applications such as cooling of engines, thermal absorption systems, lubricants fuel cell, nanodrug delivery system and so on. Temperature dependent variable thermal conductivity with Rosseland approximation is taken into account and suction effect is employed in the boundary conditions. The governing partial differential equations are first transformed into set of ordinary differential equations using selected similarity transformations, which are then solved numerically using Runge-Kutta-Felhberg fourth-fifth order method along with shooting technique. The flow, heat and mass transfer characteristics with local Nusselt number for various physical parameters are presented graphically and a detailed discussion regarding the effect of flow parameters on velocity and temperature profiles are provided. It is found that, increase of variable thermal conductivity, radiation, Brownian motion and thermophoresis parameter increases the rate of heat transfer. Local Nusselt number has been computed for various parameters and it is observed that, in the presence of variable thermal conductivity and Rosseland approximation, heat transfer characteristics are higher as compared to the constant thermal conductivity and linear thermal radiation.

Go to article

Authors and Affiliations

M. Archana
B.J. Gireesha
M.M. Rashidi
B.C. Prasannakumara
R.S.R. Gorla
Download PDF Download RIS Download Bibtex

Abstract

Adsorption experiments of nitric oxide in nitrogen carrier gas were held on activated carbon in a fixed bed flow system. Breakthrough curves describing the dependence of exit concentrations of nitric oxide on time were matched with theoretical response curves calculated from the linear driving force model (LDF). The model assumes Langmuir adsorption isotherm for the description of non-linear equilibrium and overall mass transfer coefficient for mass transfer mechanism. Overall mass transfer coefficients were obtained by the method of least squares for fitting numerically modelled breakthrough curves with experimental breakthrough curves. It was found that LDF model fits all the breakthrough curves and it is a useful tool for modelling purposes.

Go to article

Authors and Affiliations

Lenka Kuboňová
Lucie Obalová
Oldřich Vlach
Ivana Troppová
Jaroslav Kalousek
Download PDF Download RIS Download Bibtex

Abstract

The paper presents the algorithms for a flue gas/water waste-heat exchanger with and without condensation of water vapour contained in flue gas with experimental validation of theoretical results. The algorithms were used for calculations of the area of a heat exchanger using waste heat from a pulverised brown coal fired steam boiler operating in a power unit with a capacity of 900 MWe. In calculation of the condensing part, the calculation results obtained with two algorithms were compared (Colburn-Hobler and VDI algorithms). The VDI algorithm allowed to take into account the condensation of water vapour for flue gas temperatures above the temperature of the water dew point. Thanks to this, it was possible to calculate more accurately the required heat transfer area, which resulted in its reduction by 19 %. In addition, the influence of the mass transfer on the heat transfer area was taken into account, which contributed to a further reduction in the calculated size of the heat exchanger - in total by 28% as compared with the Colburn-Hobler algorithm. The presented VDI algorithm was used to design a 312 kW pilot-scale condensing heat exchanger installed in PGE Belchatow power plant. Obtained experimental results are in a good agreement with calculated values.

Go to article

Authors and Affiliations

Paweł Rączka
Kazimierz Wójs
Download PDF Download RIS Download Bibtex

Abstract

It is known that external diffusional resistances are significant in immobilized enzyme packed-bed reactors, especially at large scales. Thus, the external mass transfer effects were analyzed for hydrogen peroxide decomposition by immobilized Terminox Ultra catalase in a packed-bed bioreactor. For this purpose the apparent reaction rate constants, kP, were determined by conducting experimental works at different superficial velocities, U, and temperatures. To develop an external mass transfer model the correlation between the Colburn factor, JD, and the Reynolds number, Re, of the type JD = K Re(n-1) was assessed and related to the mass transfer coefficient, kmL. The values of K and n were calculated from the dependence (am kp-1 - kR-1) vs. Re-1 making use of the intrinsic reaction rate constants, kR, determined before. Based on statistical analysis it was found that the mass transfer correlation JD = 0.972 Re-0.368 predicts experimental data accurately. The proposed model would be useful for the design and optimization of industrial-scale reactors.

Go to article

Authors and Affiliations

Ireneusz Grubecki
Download PDF Download RIS Download Bibtex

Abstract

Energetic efficiency depicting the fraction of energy dissipation rate used to perform processes of drop breakup and mass transfer in two-phase, liquid-liquid systems is considered. Results of experiments carried out earlier in two types of high-shear mixers: an in-line rotor-stator mixer and a batch rotor-stator mixer, have been applied to identify and compare the efficiency of drop breakage and mass transfer in both types of mixers. The applied method is based on experimental determination of both: the product distribution of chemical test reactions and the drop size distributions. Experimental data are interpreted using a multifractal model of turbulence for drop breakage and the model by Favelukis and Lavrenteva for mass transfer. Results show that the energetic efficiency of the in-line mixer is higher than that of the batch mixer; two stator geometries were considered in the case of the batch mixer and the energetic efficiency of the device equipped with a standard emulsor screen (SES) was higher than the efficiency of the mixer equipped with a general purpose disintegrating head (GPDH) for drop breakup but smaller for mass transfer.

Go to article

Authors and Affiliations

Magdalena Jasińska
Jerzy Bałdyga
Download PDF Download RIS Download Bibtex

Abstract

A pair of fast competitive reactions, neutralization and 2,2-dimetoxypropane (DMP) hydrolysis, has been applied do study mass transfer and micromixing in a T 50 Ultra-Turrax® - IKA rotor-stator device. In experiments the dispersed organic phase containing p-Toluenesulfonic acid (pTsOH) dissolved in diisopropyl ether, whereas the continuous phase was represented by the aqueous solution of sodium hydroxide, 2,2-dimetoxypropane (DMP) and ethanol. During mixing a fast mass transfer of a solute (pTsOH) from organic phase droplets, which were shrinking due to fast dissolution of the organic solvent, was followed by micromixing and chemical reactions in the continuous phase. Measured hydrolysis yields were applied to express effects of mixing on the course of chemical reactions. Modeling was based on application of models describing drop breakup, mass transfer in the liquid-liquid system and micromixing. Combined effects of mass transfer and drop breakage on drop population were expressed using the population balance equations. The model has been used to interpret experimental results, in particular to identify the efficiency of mixing.

Go to article

Authors and Affiliations

Jerzy Bałdyga
Michał Kotowicz
Download PDF Download RIS Download Bibtex

Abstract

Nitrous oxide is often used in the space industry, as an oxidiser or monopropellant, mostly in self-pressurised configurations. It has potential for growth in use due to the recent rising interest in green propellants. At the same time, modelling the behaviour of a self-pressurising nitrous oxide tank is a challenging task, and few accurate numerical models are currently available. Two-phase flow, heat transfer and rapid changes of mass and temperature in the investigated system all increase the difficulty of accurately predicting this process. To get a get better understanding of the emptying of a self-pressurised nitrous oxide tank, two models were developed: a phase equilibrium model (single node equilibrium), treating the control volume as a single node in equilibrium state, and a phase interface model, featuring a moving interface between parts of the investigated medium. The single node equilibrium model is a variation of equilibrium model previously described in the literature, while the phase interface model involves a novel approach. The results show that the models are able to capture general trends in the main parameters, such as pressure or temperature. The phase interface model predicts nitrous oxide as a liquid, a two-phase mixture, and vapour in the lower part of the tank, which is reflected in the dynamics of changes in pressure and mass flow rate. The models developed for self-pressurisation, while created for predicting nitrous oxide behaviour, could be adapted for other media in conditions near vapour– liquid equilibrium by adding appropriate state equations.
Go to article

Authors and Affiliations

Jakub Szymborski
1
Dariusz Kardaś
1

  1. The Szewalski Institute of Fluid Flow Machinery, Polish Academy of Sciences, Fiszera 14, 80-231 Gdansk, Poland
Download PDF Download RIS Download Bibtex

Abstract

The aim of present work is to investigate the mass transfer of steady incompressible hydromagnetic fluid near the stagnation point with deferment of dust particles over a stretching surface. Most researchers tried to improve the mass transfer by inclusion of cross-diffusion or dust particles due to their vast applications in industrial processes, extrusion process, chemical processing, manufacturing of various types of liquid drinks and in various engineering treatments. To encourage the mass transport phenomena in this study we incorporated dust with microorganisms. Conservation of mass, momentum, concentration and density of microorganisms are used in relevant flow equations. The arising system of nonlinear partial differential equations is transformed into nonlinear ordinary differential equations. The numerical solutions are obtained by the Runge-Kutta based shooting technique and the local Sherwood number is computed for various values of the physical governing parameters (Lewis number, Peclet number, Eckert number). An important finding of present work is that larger values of these parameters encourage the mass transfer rate, and the motile organisms density profiles are augmented with the larger values of fluid particle interaction parameter with reference to bioconvection, bioconvection Lewis number, and dust particle concentration parameter.

Go to article

Authors and Affiliations

S.U. Mamatha
K. Ramesh Babu
P. Durga Prasad
C.S.K. Raju
S.V.K. Varma

This page uses 'cookies'. Learn more