Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 5
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

This paper presents a new simple and accurate frequency estimator of a sinusoidal signal based on the signal autocorrelation function (ACF). Such an estimator was termed as the reformed covariance for half-length autocorrelation (RC-HLA). The designed estimator was compared with frequency estimators well-known from the literature, such as the modified covariance for half-length autocorrelation (MC-HLA), reformed Pisarenko harmonic decomposition for half-length autocorrelation(RPHD-HLA), modified Pisarenko harmonic decomposition for half-length autocorrelation (MPHD-HLA), zero-crossing (ZC), and iterative interpolated DFT (IpDFT-IR) estimators. We determined the samples of the ACF of a sinusoidal signal disturbed by Gaussian noise (simulations studies) and the samples of the ACF of a sinusoidal voltage(experimental studies), calculated estimators based on the obtained samples, and computed the mean squared error(MSE) to compare the estimators. The errorswere juxtaposed with the Cramér–Rao lower bound (CRLB). The research results have shown that the proposed estimator is one of the most accurate, especially for SNR > 25 dB. Then the RC-HLA estimator errors are comparable to the MPHD-HLA estimator errors. However, the biggest advantage of the developed estimator is the ability to quickly and accurately determine the frequency based on samples collected from no more than five signal periods. In this case, the RC-HLA estimator is the most accurate of the estimators tested.

Go to article

Authors and Affiliations

Sergiusz Sienkowski
Mariusz Krajewski
Download PDF Download RIS Download Bibtex

Abstract

The article analyses the development of metrological control technologies for electronic distance measurement rangefinders to determine their main characteristic of accuracy – the root mean square error of distance measurement. It is established that the current reference linear bases are reliable and serve as the main means of transmitting a unit of length from the standards to the working means of measuring length. The article describes the existing linear reference bases and specifies their accuracy and disadvantages. It is concluded that the disadvantages of linear reference bases are deprived of the reference linear bases built in special laboratories. They use distances measured by the differential method with laser interferometers as reference distances. The application of such technology allowed to automate the processes of measurements and calculations. There is development of fibre-optic linear bases, in which optical fibres of known length are used as model lines. The article offers a new technical solution – a combination of fiber-optic and interference linear bases, which allows to qualitatively improve the system of metrological support of laser rangefinders. This is achieved by having a fiber-optic unit, which allows you to create baselines of increased length, while ensuring small dimensions of the baseline, and relative interference base, which provides high accuracy of linear measurements and does not require calibration of the base with a precision rangefinder, which eliminates several difficulties associated with changes in the refractive index, makes measurements independent of the wavelength of the radiation source and almost independent of the ambient temperature.
Go to article

Authors and Affiliations

Vsevolod Burachek
1
ORCID: ORCID
Dmytro Khomushko
2
ORCID: ORCID
Oleksiy Tereshchuk
3
ORCID: ORCID
Sergíy Kryachok
3
ORCID: ORCID
Vadim Belenok
4
ORCID: ORCID

  1. University of Emerging Tehnologies, Kyiv, Ukraine
  2. Private entrepreneur, Chernihiv, Ukraine
  3. Chernihiv Polytechnic National University, Chernihiv, Ukraine
  4. National Aviation University, Kyiv, Ukraine
Download PDF Download RIS Download Bibtex

Abstract

The zero attraction affine projection algorithm (ZA-APA) achieves better performance in terms of convergence rate and steady state error than standard APA when the system is sparse. It uses l1 norm penalty to exploit sparsity of the channel. The performance of ZA-APA depends on the value of zero attractor controller. Moreover a fixed attractor controller is not suitable for varying sparsity environment. This paper proposes an optimal adaptive zero attractor controller based on Mean Square Deviation (MSD) error to work in variable sparsity environment. Experiments were conducted to prove the suitability of the proposed algorithm for identification of unknown variable sparse system.

Go to article

Authors and Affiliations

S. Radhika
A. Chandrasekar
S. Nirmalraj
Download PDF Download RIS Download Bibtex

Abstract

Artificial neural network models (ANNs) were used in this study to predict reference evapotranspiration ( ETo) using climatic data from the meteorological station at the test station in Kafr El-Sheikh Governorate as inputs and reference evaporation values computed using the Penman–Monteith (PM) equation. These datasets were used to train and test seven different ANN models that included different combinations of the five diurnal meteorological variables used in this study, namely, maximum and minimum air temperature ( Tmax and Tmin), dew point temperature ( Tdw), wind speed ( u), and precipitation (P), how well artificial neural networks could predict ETo values. A feed- forward multi-layer artificial neural network was used as the optimization algorithm. Using the tansig transfer function, the final architected has a 6-5-1 structure with 6 neurons in the input layer, 5 neurons in the hidden layer, and 1 neuron in the output layer that corresponds to the reference evapotranspiration. The root mean square error ( RMSE) of 0.1295 mm∙day –1 and the correlation coefficient ( r) of 0.996 are estimated by artificial neural network ETo models. When fewer inputs are used, ETo values are affected. When three separate variables were employed, the RMSE test values were 0.379 and 0.411 mm∙day –1 and r values of 0.971 and 0.966, respectively, and when two input variables were used, the RMSE test was 0.595 mm∙day –1 and the r of 0.927. The study found that including the time indicator as an input to all groups increases the prediction of ETo values significantly, and that including the rain factor has no effect on network performance. Then, using the Penman–Monteith method to estimate the missing variables by using the ETo calculator the normalised root mean squared error ( NRMSE) reached about 30% to predict ETo if all data except temperature is calculated, while the NRMSE reached about of 13.6% when used ANN to predict ETo using variables of temperature only.
Go to article

Authors and Affiliations

Amal Abo El-Magd
1
ORCID: ORCID
Shaimaa M. Baraka
2
ORCID: ORCID
Samir F.M. Eid
1
ORCID: ORCID

  1. Agricultural Engineering Research Institute (AEnRI), Agricultural Research Centre (ARC) Nadi El-Said St. Dokki, P.O. Box 256, Giza, Egypt
  2. Ain Shams University, Faculty of Agriculture, Department of Agricultural Engineering, Cairo, Egypt
Download PDF Download RIS Download Bibtex

Abstract

Advancement in medical technology creates some issues related to data transmission as well as storage. In real-time processing, it is too tedious to limit the flow of data as it may reduce the meaningful information too. So, an efficient technique is required to compress the data. This problem arises in Magnetic Resonance Imaging (MRI), Electrocardiogram (ECG), Electroencephalogram (EEG), and other medical signal processing domains. In this paper, we demonstrate Block Sparse Bayesian Learning (BSBL) based compressive sensing technique on an Electroencephalogram (EEG) signal. The efficiency of the algorithm is described using the Mean Square Error (MSE) and Structural Similarity Index Measure (SSIM) value. Apart from this analysis we also use different combinations of sensing matrices too, to demonstrate the effect of sensing matrices on MSE and SSIM value. And here we got that the exponential and chi-square random matrices as a sensing matrix are showing a significant change in the value of MSE and SSIM. So, in real-time body sensor networks, this scheme will contribute a significant reduction in power requirement due to its data compression ability as well as it will reduce the cost and the size of the device used for real-time monitoring.
Go to article

Bibliography

[1] Zou, Xiuming, Lei Feng, and Huaijiang Sun. "Compressive Sensing of Multichannel EEG Signals Based on Graph Fourier Transform and Cosparsity." Neural Processing Letters (2019): 1-10.
[2] Tayyib, Muhammad, Muhammad Amir, Umer Javed, M. Waseem Akram, Mussyab Yousufi, Ijaz M. Qureshi, Suheel Abdullah, and Hayat Ullah. "Accelerated sparsity-based reconstruction of compressively sensed multichannel EEG signals." PLoS One 15, no. 1 (2020): e0225397.
[3] Şenay, Seda, Luis F. Chaparro, Mingui Sun, and Robert J. Sclabassi. "Compressive sensing and random filtering of EEG signals using Slepian basis." In 2008 16th European Signal Processing Conference, pp. 1-5. IEEE, 2008.
[4] Gurve, Dharmendra, Denis Delisle-Rodriguez, Teodiano Bastos-Filho, and Sridhar Krishnan. "Trends in Compressive Sensing for EEG Signal Processing Applications." Sensors 20, no. 13 (2020): 3703.
[5] Amezquita-Sanchez, Juan P., Nadia Mammone, Francesco C. Morabito, Silvia Marino, and Hojjat Adeli. "A novel methodology for automated differential diagnosis of mild cognitive impairment and the Alzheimer’s disease using EEG signals." Journal of Neuroscience Methods 322 (2019): 88-95.
[6] R. DeVore, "Nonlinear approximation." Acta Numerica, 7, 51-150. (1998).
[7] A. Einstein, B. Podolsky, N. Rosen, 1935, “Can quantum-mechanical description of physical reality be considered complete?”, Phys. Rev. 47, 777-780.
[8] R. G. Baraniuk, "Compressive sensing, IEEE Signal Proc." Mag 24, no. 4 (2007): 118-120.
[9] Upadhyaya, Vivek, and Mohammad Salim. "Basis & Sensing Matrix as key effecting Parameters for Compressive Sensing." In 2018 International Conference on Advanced Computation and Telecommunication (ICACAT), pp. 1-6. IEEE, 2018.
[10] E. Candes, “Compressive sampling”, In Proc. Int. Congress of Math., Madrid, Spain, Aug. 2006.
[11] E. Candes, J. Romberg, “Quantitative robust uncertainty principles and optimally sparse decompositions”, Found. Compute. Math., 6(2): 227-254, 2006.
[12] E. Candes, J. Romberg, T. Tao, “Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information”. IEEE Trans. Inform. Theory, 52(2):489-509, 2006.
[13] E. Candes, J. Romberg, and T. Tao. Stable signal recovery from incomplete and inaccurate measurements. Comm. Pure Appl. Math., 59(8): 1207-1223, 2006.
[14] E. Candes and T. Tao. Near-optimal signal recovery from random projections: Universal encoding strategies? IEEE Trans. Inform. Theory, 52(12): 5406-5425, 2006.
[15] D. Donoho. Compressed sensing. IEEE Trans. Inform. Theory, 52(4):1289-1306, 2006.
[16] S. Kirolos, J. Laska, M. Wakin, M. Duarte, D. Baron, T. Ragheb, Y. Massoud, and R.G. Baraniuk, “Analog-to-information conversion via random demodulation,” in Proc. IEEE Dallas Circuits Systems Workshop, Oct. 2006, pp. 71-74.
[17] Zhang, Zhilin, Tzyy-Ping Jung, Scott Makeig, Bhaskar D. Rao. "Compressed sensing for energy-efficient wireless telemonitoring of noninvasive fetal ECG via block sparse Bayesian learning." IEEE Transactions on Biomedical Engineering 60, no. 2 (2012): 300-309.
[18] https://sccn.ucsd.edu/eeglab/download.php.
[19] Joshi, Amit Mahesh, Vivek Upadhyaya. "Analysis of compressive sensing for non-stationary music signal." In 2016 International Conference on Advances in Computing, Communications, and Informatics (ICACCI), pp. 1172-1176. IEEE, 2016.
[20] Wang, Zhou, Alan C. Bovik, Hamid R. Sheikh, Eero P. Simoncelli. "Image quality assessment: from error visibility to structural similarity." IEEE transactions on image processing 13, no. 4 (2004): 600-612.
[21] Nibheriya, Khushboo, Vivek Upadhyaya, Ashok Kumar Kajla. "To Analysis the Effects of Compressive Sensing on Music Signal with variation in Basis & Sensing Matrix." In 2018 Second International Conference on Electronics, Communication and Aerospace Technology (ICECA), pp. 1121-1126. IEEE, 2018.
[22] Zhang, Zhilin, Tzyy-Ping Jung, Scott Makeig, and Bhaskar D. Rao. "Compressed sensing of EEG for wireless telemonitoring with low energy consumption and inexpensive hardware." IEEE Transactions on Biomedical Engineering 60, no. 1 (2012): 221-224.
Go to article

Authors and Affiliations

Vivek Upadhyaya
1
ORCID: ORCID
Mohammad Salim
1

  1. Malaviya National Institute of Technology, India

This page uses 'cookies'. Learn more