Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 2
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

In this study, the effect of rolling of 1.25Cr-1Mo-0.5V-0.3C American Iron and Steel Institute 4340 modified steel for highspeed railway brake discs on the microstructure and mechanical properties was investigated. The materials were hot-rolled at 0%, 51%, and 66% reduction ratios, and then analyzed by optical microscopy, scanning electron microscopy, and electron backscattering diffraction (EBSD). needle-shaped ferrite block morphology in bainite varied with the rolling ratio. EBSD analysis reveals dynamic recovery and dynamic recrystallization, affected ferrite block boundaries and dislocation densities during rolling. Mechanical tests showed that hardness, toughness and elongation increase at higher rolling reduction ratio, while strength remained relatively constant. In particular, the impact toughness increased almost twice from the level of 70 J in S1 (0% reduction) to the level of 130 J in S3 (66% reduction). These results showed that the hot rolling can significantly improve the strength and toughness combination of cast brake discs material.
Go to article

Authors and Affiliations

Hyo-Seong Kim
1 2 4
ORCID: ORCID
Moonseok Kang
1
ORCID: ORCID
Minha Park
1
ORCID: ORCID
Byung Jun Kim
1
ORCID: ORCID
Yong-Shin Kim
3
Tae Young Lee
3
Byoungkoo Kim
1
ORCID: ORCID
Yong-Sik Ahn
2
ORCID: ORCID

  1. Korea Institute of Industrial Technology, 46938, Busan, Republic of Korea
  2. Pukyong National University, Department of Materials Science and Engineering, 48547, Busan, Republic of Korea
  3. KATEM, 51395, Changwon, Republic of Korea
  4. HD Korea Shipbuilding & Offshore Engineering, 44032, Ulsan, Republic of Korea
Download PDF Download RIS Download Bibtex

Abstract

In this study, medium-carbon steel was subjected to warm deformation experiments on a Gleeble 3500 thermosimulator machine at temperatures of 550°C and 650°C and strain rates of 0.001 s–1 to 1 s–1. The warm deformation behavior of martensite and the effects of strain rate on the microstructure of ultrafine grained medium-carbon steel were investigated. The precipitation behavior of Fe3C during deformation was analyzed and the results showed that recrystallization occurred at a low strain rate. The average ultrafine ferrite grains of 500 ± 58 nm were fabricated at 550°C and a strain rate of 0.001 s–1. In addition, the size of Fe3C particles in the ferrite grains did not show any apparent change, while that of the Fe3C particles at the grain boundaries was mainly affected by the deformation temperature. The size of Fe3C particles increased with the increasing deformation temperature, while the strain rate had no significant effect on Fe3C particles. Moreover, the grain size of recrystallized ferrite decreased with an increase in the strain rate. The effects of the strain rate on the grain size of recrystallized ferrite depended on the deformation temperature and the strain rate had a prominent effect on the grain size at 550°C deformation temperature. Finally, the deformation resistance apparently decreased at 550°C and strain rate of 1 s–1 due to the maximum adiabatic heating in the material.

Go to article

Authors and Affiliations

Q. Yuan
G. Xu
S. Liu
M. Liu
H. Hu

This page uses 'cookies'. Learn more