Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 2
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

This paper presents a detailed study of melting processes conducted on Hansbreen - a tidewater glacier terminating in the Hornsund fjord, Spitsbergen. The fieldwork was carried out from April to July 2010. The study included observations of meltwater distribution within snow profiles in different locations and determination of its penetration time to the glacier ice surface. In addition, the variability of the snow temperature and heat transfer within the snow cover were measured. The main objective concerns the impact of meltwater on the diversity of physical characteristics of the snow cover and its melting dynamics. The obtained results indicate a time delay between the beginning of the melting processes and meltwater reaching the ice surface. The time necessary for meltwater to percolate through the entire snowpack in both, the ablation zone and the equilibrium line zone amounted to c. 12 days, despite a much greater snow depth at the upper site. An elongated retention of meltwater in the lower part of the glacier was caused by a higher amount of icy layers (ice formations and melt-freeze crusts), resulting from winter thaws, which delayed water penetration. For this reason, a reconstruction of rain-on-snow events was carried out. Such results give new insight into the processes of the reactivation of the glacier drainage system and the release of freshwater into the sea after the winter period.
Go to article

Authors and Affiliations

Michał Laska
Tomasz Budzik
Bartłomiej Luks
Download PDF Download RIS Download Bibtex

Abstract

The buoyant hypopycnal flow of brackish water and suspended sediment transport and settling were studied in two sub-polar fjords: the glacial Kongsfjörden and the outwash (non-glacial contact) Adventfjörden, Svalbard . The data presented indicates faster water mixing on the tidal flat in comparison to the englacial runoff, which leads to faster horizontal density gradients decreases in the non-glaciated fjord. The fast settling of particles in the narrow zone of the steep slope at the edge of the tidal flat leads to the removal of 25% of the surface suspended sediment. The rapid settling is due to increasing salinity, decreasing velocity, and flocculation of fine particles. The fast settling of suspended particulate matter (SPM) in the tidal flat area causes sediment redeposition and resuspension followed by sediment transport along the bottom with hyperpycnal flows. This leads to grain sorting in the fjord head. In contrast, at the glacier front, SPM is transported farther into the fjord, where tidal pumping and water mixing lead to the removal of 71% of total SPM. The fjords investigated represent two different sedimentological regimes. In the glaciated Kongsfjörden, the buoyant hypopycnal flow of brackish water is the main sediment transporting factor. In the non-glacial Adventfjörden, hyperpycnal flows transport sediment along the bottom.

Go to article

Authors and Affiliations

Marek Zajączkowski

This page uses 'cookies'. Learn more