Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 3
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

Th is report provides a concise overview of the rendering and utilization of three-dimensional models in the fi eld of anatomy. Anatomical three-dimensional virtual models are widely used for educational purposes, preoperative planning, and surgical simulations because they simply allow for interactive three-dimensional navigation across the human organs or entire body. Virtual threedimensional models have been recently fabricated as accurate replicas of the anatomical structures thanks to advances in rapid prototyping technology.

Go to article

Authors and Affiliations

Janusz Skrzat
Matthew J. Zdilla
Download PDF Download RIS Download Bibtex

Abstract

This article summarizes technical aspects of preparing printable 3D anatomical models created from radiological data (CT, MRI) and discusses their usefulness in surgery of the human skull. Interdisciplinary approach to the capabilities of the 3D printers, and the materials used for manufacturing 3D objects oriented on replicating anatomical structures has created new possibilities for simulating and planning surgical procedures in clinical practice settings.
Go to article

Bibliography

1. Ameil M., Delattre J.F., Cordobes B., Flament J.B.: Computerized reconstruction of an anatomical structure based on digitized sections. Anat Clin. 1984; 5 (4): 261–264. doi: 10.1007/BF01798749.
2. Vannier M.W., Marsh J.L., Warren J.O.: Three dimensional CT reconstruction images for craniofacial surgical planning and evaluation. Radiology. 1984; 150 (1): 179–184. doi: 10.1148/radiology.150.1.6689758.
3. Groth C., Kravitz N.D., Jones P.E, Graham J.W., Redmond W.R.: Three-dimensional printing technology. J Clin Orthod. 2014; 48 (8): 475–485. PMID: 25226040.
4. Onuh S.O., Yusuf Y.Y.: Rapid prototyping technology: applications and benefits for rapid product development. J Intell Manuf. 1999; 10 (3–4): 301–311. doi: 10.1023/ A:1008956126775.
5. Anderson J.R., Thompson W.L., Alkattan A.K, Diaz O., Klucznik R., Zhang Y.J., Britz G.W., Grossman R.G., Karmonik C.: Three-dimensional printing of anatomically accurate, patient specific intracranial aneurysm models. J Neurointerv Surg. 2016; 8: 517–520. doi: 10.1136/neurintsurg-2015-011686.
6. Anderl H., Zur Nedden D., Mühlbauer W., Twerdy K., Zanon E., Wicke K., Knapp R.: CT-guided stereolithography as a new tool in craniofacial surgery. Br J Plastic Surg. 1994; 47 (1): 60–64. doi: 10.1016/0007-1226(94)90121-x.
7. Eltorai A.E., Nguyen E., Daniels A.H.: Three-dimensional printing in orthopedic surgery. Orthopedics. 2015; 38 (11): 684–687. doi : 10.3928/01477447-20151016-05.
8. Hoch E., Tovar G.E., Borchers K.: Bioprinting of artificial blood vessels: current approaches towards a demanding goal. Eur J Cardiothorac Surg. 2014; 46 (5): 767– 778. doi: 10.1093/ejcts/ezu242.
9. Kamali P., Dean D., Skoracki R., Koolen P.G., Paul M.A., Ibrahim A.M., Lin S.J.: The current role of three-dimensional printing in plastic surgery. Plast Reconstr Surg. 2016; 137 (3): 1045–1055. doi: 10.1097/01.prs.0000479977.37428.8e.
10. VanKoevering K.K., Hollister S.J., Green G.E.: Advances in 3-dimensional printing in otolaryngology: a review. JAMA Otolaryngol Head Neck Surg. 2017; 143 (2): 178– 183. doi: 10.1001/jamaoto.2016.3002.
11. Pham D.L., Xu C., Prince J.L.: Current methods in medical image segmentation. Annu Rev Biomed Eng. 2000; 2 (1): 315–337. doi: 10.1146/annurev.bioeng.2.1.315.
12. Sharma N., Aggarwal L.M.: Automated medical image segmentation techniques. J Med Phys. 2010; 35 (1): 3–14. doi: 10.4103/0971-6203.58777.
13. Withey D.J., Koles Z.J.: A review of medical image segmentation: methods and available software. Int J Bioelectromagn. 2008; 10 (3): 125–148.
14. Pal N.R., Pal S.K.: A review on image segmentation techniques. Patt Rec. 1993; 26 (9): 1277–1294. doi: 10.1016/0031-3203(93)90135-J.
15. Sahoo P.K., Soltani S.A. Wong A.K.C.: A survey of thresholding techniques. Comput Vis Graph Im Proc. 1988; 41 (2): 233–260. doi: 10.1016/0734-189X(88)90022-9.
16. Winder J., Bibb R.: Medical rapid prototyping technologies: state of the art and current limitations for application in oral and maxillofacial surgery. J Oral Maxillofac Surg. 2005; 63 (7): 1006–1015. doi: 10.1016/j.joms.2005.03.016.
17. Fleiter T., Hoffmann R., Niemeier R., Claussen C.D.: Preoperative planning and follow-up with spiral CT and stereolithographic models in craniofacial surgery. In Advances in CT III. Springer, Berlin, Heidelberg 1994; 149–156.
18. Mankovich N.J., Cheeseman A.M., Stoker N.G.: The display of three-dimensional anatomy with stereolithographic models. J Digit Imaging. 1990; 3 (3): 200–203. doi: 10.1007/BF03167610.
19. Stoker G.N., Mankovich N.J., Valentino D.: Stereolithographic models for surgical planning: preliminary report. J Oral Maxillofac Surg. 1992; 50: 466–471. doi: 10.1016/ s0278-2391(10)80317-9.
20. Eppley B.L., Sadove A.M.: Computer-generated patient models for reconstruction of cranial and facial deformities. J Craniofac Surg. 1998; 9 (6): 548–556. doi: 10.1097/ 00001665-199811000-00011.
21. Müller A., Krishnan K.G., Uhl E., Mast G.: The application of rapid prototyping techniques in cranial reconstruction and preoperative planning in neurosurgery. J Craniofac Surg. 2003; 14 (6): 899–914. doi: 10.1097/00001665-200311000-00014.
22. Singare S., Yaxiong L., Dichen L., Bingheng L., Sanhu H., Gang L.: Fabrication of customised maxillo-facial prosthesis using computer-aided design and rapid prototyping techniques. Rapid Prototyp J. 2006; 12 (4): 206–213. doi: 10.1108/ 13552540610682714.
23. Kermer C., Lindner A., Friede I., Wagner A., Millesi W.: Preoperative stereolithographic model planning for primary reconstruction in craniomaxillofacial trauma surgery. J Craniomaxillofac Surg. 1998; 26 (3): 136–139. doi: 10.1016/s1010-5182(98) 80002-4.
24. Kernan B.T., Wimsatt J.A.: Use of a stereolithography model for accurate, preoperative adaptation of a reconstruction plate. J Oral Maxillofac Surg. 2000; 58 (3): 349– 351. doi: 10.1016/s0278-2391(00)90071-5.
25. Ehrenberg R.: Plastic implant replaces three-quarters of man’s skull. Science News. March 11, 2013.
26. Sunderland I.R., Edwards G., Mainprize J., Antonyshyn O.: A technique for intraoperative creation of patient-specific titanium mesh implants. Plast Surg (Oakv). 2015; 23 (2): 95–99. doi: 10.4172/plastic-surgery.1000909.
27. Bell R.B., Markiewicz M.R.: Computer-assisted planning, stereolithographic modeling, and intraoperative navigation for complex orbital reconstruction: a descriptive study in a preliminary cohort. J Oral Maxillofac Surg. 2009; 67 (12): 2559–2570. doi: 10.1016/j.joms.2009.07.098.
28. D’Urso P.S., Atkinson R.L., Lanigan M.W., Earwaker W.J., Bruce I.J., Holmes A., Barker T.M., Effeney D.J., Thompson R.G.: Stereolithographic (SL) biomodelling in craniofacial surgery. Br J Plast Surg. 1998; 51 (7): 522–530. doi: 10.1054/ bjps.1998.0026.
29. D’Urso P.S., Redmond M.J.: A method for the resection of cranial tumours and skull reconstruction. Br J Neurosurg. 2000; 14 (6): 555–559. doi: 10.1080/ 02688690020005581.
30. Erickson D.M., Chance D., Schmitt S., Mathis J.: An opinion survey of reported benefits from the use of stereolithographic models. J Oral Maxillofac Surg. 1999; 57 (9): 1040–1043.
31. Cui J., Chen L., Guan X., Ye L., Wang H., Liu L.: Surgical planning, three-dimensional model surgery and preshaped implants in treatment of bilateral craniomaxillofacial post-traumatic deformities. J Oral Maxillofac Surg. 2014; 72 (6): 1138-e1-14. doi: 10.1016/j.joms.2014.02.023.
32. Frühwald J., Schicho K.A., Figl M., Benesch T., Watzinger F., Kainberger F.: Accuracy of craniofacial measurements: computed tomography and three-dimensional computed tomography compared with stereolithographic models. J Craniofac Surg. 2008; 19 (1): 22–26. doi: 10.1097/scs.0b013e318052ff1a.
33. Choi J.Y., Choi J.H., Kim N.K., Kim Y., Lee J.K., Kim M.K., Lee J.H., Kim M.J.: Analysis of errors in medical rapid prototyping models. Int J Oral Maxillofac Surg. 2002; 31.(1): 23–32. doi: 10.1054/ijom.2000.0135.
34. Barker T.M., Earwaker W.J., Lisle D.A.: Accuracy of stereolithographic models of human anatomy. Australas Radiol. 1994; 38 (2): 106–111. doi: 10.1111/j.1440-1673.1994.tb00146.x.
35. Chang P.S., Parker T.H., Patrick C.W., Miller M.J.: The accuracy of stereolithography in planning craniofacial bone replacement. J Craniofac Surg. 2003; 14 (2): 164–170. doi: 10.1097/00001665-200303000-00006.
36. Nizam A., Gopal R., Naing N.L., Hakim A.B., Samsudin A.R.: Dimensional accuracy of the skull models produced by rapid prototyping technology using stereolithography apparatus. Arch Orofac Sci. 2006; 1: 60–66.
37. Chia H.N., Wu B.M.: Recent advances in 3D printing of biomaterials. J Biol Eng. 2015; 9 (1): 4. doi: 10.1186/s13036-015-0001-4.
38. Hsieh T.Y., Dedhia R., Cervenka B., Tollefson T.T.: 3D Printing: current use in facial plastic and reconstructive surgery. Curr Opin Otolaryngol Head Neck Surg. 2017; 25 (4): 291–299. doi: 10.1097/MOO.0000000000000373.
39. Jakus A.E., Rutz A.L., Shah R.N.: Advancing the field of 3D biomaterial printing. Biomed Mater. 2016; 11 (1): 014102. doi: 10.1088/1748-6041/11/1/014102.
40. Poukens J., Haex J., Riediger D.: The use of rapid prototyping in the preoperative planning of distraction osteogenesis of the cranio-maxillofacial skeleton. Comput Aided Surg. 2003; 8 (3): 146–154. doi: 10.3109/10929080309146049.
41. Wang Y., Ni M., Tang P.F., Li G.: Novel application of HA-TCP biomaterials in distraction osteogenesis shortened the lengthening time and promoted bone consolidation. J Orthop Res. 2009; 27 (4): 477–482. doi: 10.1002/jor.20782.
42. Ballard D.H., Trace A.P., Ali S., Hodgdon T., Zygmont M.E., DeBenedectis C.M., Smith S.E., Richardson M.L., Patel M.J., Decker S.J., Lenchik L.: Clinical Applications of 3D Printing: Primer for Radiologists. Acad Radiol. 2018; 25 (1): 52–65. doi: 10.1016/j.acra.2017.08.004.
43. Chepelev L., Giannopoulos A., Tang A., Mitsouras D., Rybicki F.J.: Medical 3D printing: methods to standardize terminology and report trends. 3D Print Med. 2017; 3 (1): 4. doi: 10.1186/s41205-017-0012-5.
44. Bauermeister A.J., Zuriarrain A., Newman M.I.: Three-dimensional printing in plastic and reconstructive surgery: a systematic review. Ann Plast Surg. 2016; 77 (5): 569– 576. doi: 10.1097/SAP.0000000000000671.
45. Pham D.L., Xu C., Prince J.L.: Current methods in medical image segmentation. Annu Rev Biomed Eng. 2000; 2 (1): 315–337. doi: 10.1146/annurev.bioeng.2.1.315.
46. Waran V., Devaraj P., Hari Chandran T., Muthusamy K.A., Rathinam A.K., Balakrishnan Y.K., Tung T.S., Raman R., Rahman Z.A.: Three-dimensional anatomical accuracy of cranial models created by rapid prototyping techniques validated using a neuronavigation station. J Clin Neurosci. 2012; 19 (4): 574–577. doi: 10.1016/j.jocn.2011.07.031.
Go to article

Authors and Affiliations

Janusz Skrzat
1

  1. Department of Anatomy, Jagiellonian University Medical College, Kraków, Poland
Download PDF Download RIS Download Bibtex

Abstract

The anatomy of the human temporal bone is complex and, therefore, poses unique challenges for students. Furthermore, temporal bones are frequently damaged from handling in educational settings due to their inherent fragility. This report details the production of a durable physical replica of the adult human temporal bone, manufactured using 3D printing technology. The physical replica was printed from a highly accurate virtual 3D model generated from CT scans of an isolated temporal bone. Both the virtual and physical 3D models accurately reproduced the surface anatomy of the temporal bone. Therefore, virtual and physical 3D models of the temporal bone can be used for educational purposes in order to supplant the use of damaged or otherwise fragile human temporal bones.

Go to article

Authors and Affiliations

Janusz Skrzat
Matthew J. Zdilla
Paweł Brzegowy
Mateusz Hołda

This page uses 'cookies'. Learn more