Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 4
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

An efficiency of the nonsingular meshless method (MLM) was analyzed in an acoustic indoor problem. The solution was assumed in the form of the series of radial bases functions (RBFs). Three representative kinds of RBF were chosen: the Hardy’s multiquadratic, inverse multiquadratic, Duchon’s functions. The room acoustic field with uniform, impedance walls was considered. To achieve the goal, relationships among physical parameters of the problem and parameters of the approximate solution were first found. Physical parameters constitute the sound absorption coefficient of the boundary and the frequency of acoustic vibrations. In turn, parameters of the solution are the kind of RBFs, the number of elements in the series of the solution and the number and distribution of influence points. Next, it was shown that the approximate acoustic field can be calculated using MLM with a priori error assumed. All approximate results, averaged over representative rectangular section of the room, were calculated and then compared to the corresponding accurate results. This way, it was proved that the MLM, based on RBFs, is efficient method in description of acoustic boundary problems with impedance boundary conditions and in all acoustic frequencies.

Go to article

Authors and Affiliations

Edyta Prędka
Adam Brański
ORCID: ORCID
Download PDF Download RIS Download Bibtex

Abstract

Two optimization aspects of the meshless method (MLM) based on nonsingular radial basis functions (RBFs) are considered in an acoustic indoor problem. The former is based on the minimization of the mean value of the relative error of the solution in the domain. The letter is based on the minimization of the relative error of the solution at the selected points in the domain. In both cases the optimization leads to the finding relations between physical parameters and the approximate solution parameters. The room acoustic field with uniform, impedance walls is considered.

As results, the most effective Hardy’s Radial Basis Function (H-RBF) is pointed out and the number of elements in the series solution as a function of frequency is indicated. Next, for H-RBF and fixed n, distributions of appropriate acoustic fields in the domain are compared. It is shown that both aspects of optimization improve the description of the acoustic field in the domain in a strictly defined sense.

Go to article

Authors and Affiliations

Edyta Prędka
Anna Kocan-Krawczyk
Adam Jan Brański
Download PDF Download RIS Download Bibtex

Abstract

The analysis of subsonic stall flutter in turbomachinery blade cascade is carried out using a medium-fidelity reduced-order aeroelastic numerical model. The model is a type of field mesh-free approach and based on a hybrid boundary element method. The medium-fidelity flow solver is developed on the principle of viscous-inviscid two-way weak-coupling approach. The hybrid flow solver is employed to model separated flow and stall flutter in the 3D blade cascade at subsonic speed. The aerodynamic damping coefficient w.r.t. inter blade phase angle in traveling-wave mode is estimated along with other parameters. The same stability parameter is used to analyze the cascade flutter resistance regime. The estimated results are validated against experimental measurements as well as Navier-Stokes based high fidelity CFD model. The simulated results show good agreement with experimental data. Furthermore, the hybrid flow solver has managed to bring down the computational cost significantly as compared to mesh-based CFD models. Therefore, all the prime objectives of the research have been successfully achieved.
Go to article

Bibliography

  1.  “Nuclear power: 2 largest steam turbine ever made,” 2020, (Accessed: 2020-10-06). [Online]. Available: https://www.ge.com/news/reports.
  2.  T. Rice, D. Bell, and G. Singh, “Identification of the stability margin between safe operation and the onset of blade flutter,” J. Turbomach., vol. 131, no. 1, 2009, doi: 10.1115/1.2812339.
  3.  J. Kiciński, “The flutter effect in rotating machines,” Bull. Pol. Acad. Sci. Tech. Sci., pp. 195–207, 2004.
  4.  M. Vahdati, N. Smith, and F. Zhao, “Influence of Intake on Fan Blade Flutter,” J. Turbomach., vol. 137, no. 8, 08 2015, doi: 10.1115/1.4029240.
  5.  J.D. Jeffers and C.E. Meece Jr, “F100 fan stall flutter problem review and solution,” J. Aircr., vol. 12, no. 4, pp. 350–357, 1975, doi: 10.2514/3.44454.
  6.  R. Rządkowski, V. Gnesin, and L. Kolodyzhnaya, “3d viscous flutter of 11th configuration blade row,” Adv. Vib. Eng., vol. 8, no. 3, pp. 213–228, 2009. [Online]. Available: https://www.elibrary.ru/item.asp?id=27911163.
  7.  J.L. Hess, “Calculation of potential flow about arbitrary threedimensional lifting bodies,” Naval Air Systems Command, Department of the Navy, Final Technical Report MDC J5679-01, 1972. [Online]. Available: https://apps.dtic.mil/sti/citations/AD0755480.
  8.  C.S. Prasad and L. Pešek, “Efficient prediction of classical flutter stability of turbomachinery blade using the boundary element type numerical method,” Eng. Anal. Boundary Elem., vol. 113, pp. 328–345, 2020, doi: 10.1016/j.enganabound.2020.01.013.
  9.  C.S. Prasad, R. Kolman, and L. Pešek, “A cost effective approach for subsonic aeroelastic stability analysis of turbomachinery 3d blade cascade. A reduced order aeroelastic model numerical approach,” Nonlinear Dyn.:under-review, 2021, doi: 10.21203/rs.3.rs-252660/v1.
  10.  V.A. Riziotis and S.G. Voutsinas, “Dynamic stall modelling on airfoils based on strong viscous-inviscid interaction coupling,” Int. J. Numer. Methods Fluids, vol. 56, pp. 185–208, 2008, doi: 10.1002/fld.1525.
  11.  N.R. García, A. Cayron, and J.N. Sørensen, “Unsteady double wake model for the simulation of stalled airfoils,” J. Power Energy Eng., vol. 3, pp. 20–25, 2015. doi: 10.4236/jpee.2015.37004.
  12.  A. Zanon, P. Giannattasio, and C.J. Simão Ferreira, “A vortex panel model for the simulation of the wake flow past a vertical axis wind turbine in dynamic stall,” Wind Energy, vol. 16, no. 5, pp. 661–680, 2013, doi: 10.1002/we.1515.
  13.  C. Prasad, Q.-Z. Chen, O. Bruls, F. D’Ambrosio, and G. Dimitriadis, “Aeroservoelastic simulations for horizontal axis wind turbines,” Proc. Inst. Mech. Eng., Part A: J. Power Energy, vol. 231, no. 2, pp. 103–117, 2016, doi: 10.1177/0957650916678725.
  14.  C. Prasad, Q.-Z. Chen, O. Bruls, F. D’Ambrosio, and G. Dimitriadis, “Advanced aeroservoelastic modeling for horizontal axis wind turbines,” in Proceedings of the 9th International Conference on Structural Dynamics, EURODYN 2014, Porto, Portugal, July 2014, pp. 3097–3104.
  15.  Z. Goraj, A. Frydrychewicz, R. Świtkiewicz, B. Hernik, J. Gadomski, T. Goetzendorf-Grabowski, M. Figat, S. Suchodolski, and W. Chajec, “High altitude long endurance unmanned aerial vehicle of a new generation – a design challenge for a low cost, reliable and high performance aircraft,” Bull. Pol. Acad. Sci. Tech. Sci., pp. 173–194, 2004.
  16.  C.S. Prasad and L. Pešek, “Analysis of classical flutter in steam turbine blades using reduced order aeroelastic model,” in The 14th Inter- national Conference on Vibration Engineering and Technology of Machinery (VETOMAC XIV), Lisabon, Portugal, Sept 2018, pp. 150–156, doi: 10.1051/matecconf/201821115001.
  17.  C.S. Prasad and L. Pešek, “Classical flutter study in turbomachinery cascade using boundary element method for incompressible flows,” in Advances in Mechanism and Machine Science, T. Uhl, Ed. Cham: Springer International Publishing, 2019, pp. 4055–4064, doi: 10.1007/978-3-030-20131-9_404.
  18.  C.S. Prasad and L. Pešek, “Subsonic stall flutter analysis in 2d blade cascade using hybrid boundary element method,” in In Proceedings of the 11th International Conference on Structural Dynamics, EURODYN 2020, Athens, Greece, November 2020, pp. 213–224.
  19.  J. Katz and A. Plotkin, Low-Speed Aerodynamics, 2nd ed. Cambridge University Press, 2001.
  20.  T. Wang and F.N. Coton, “Numerical simulation of wind tunnel wall effects on wind turbine flows,” Wind Energy: An International Journal for Progress and Applications in Wind Power Conversion Technology, vol. 3, no. 3, pp. 135–148, 2000, doi: 10.1002/we.35.
  21.  D. Ashby and D. Sandlin, “Application of a low order panel method to complex three-dimensional internal flow problems,” NASA Contractor report 177424, Tech. Rep., 1986. [Online]. Available: https://ntrs.nasa.gov/citations/19860021529.
  22.  C.S. Prasad and G. Dimitriadis, “Application of a 3d unsteady surface panel method with flow separation model to horizontal axis wind turbines,” J. Wind Eng. Ind. Aerodyn., vol. 166, pp. 74–89, 2017, doi: 10.1016/j.jweia.2017.04.005.
  23.  A. Zanon, P. Giannattasio, and C.J. Simão Ferreira, “A vortex panel model for the simulation of the wake flow past a vertical axis wind turbine in dynamic stall,” Wind Energy, vol. 16, no. 5, pp. 661–680, 2013.
  24.  Y. Hanamura, H. Tanaka, and K. Yamaguchi, “A simplified method to measure unsteady forces acting on the vibrating blades in cascade,” Bull. JSME, vol. 23, no. 180, pp. 880–887, 1980, doi: 10.1299/jsme1958.23.880.
  25.  E.F. Crawley, “Measurements of aerodynamic damping on the mit transonic rotor,” Cambridge, Mass.: Gas Turbine & Plasma Dynamics Laboratory, Massachusetts Institute of Technology, Tech. Rep., 1981. [Online]. Available: http://hdl.handle.net/1721.1/104728.
  26.  V. Tsymbalyuk and J. Linhart, “Corrections of aerodynamic loadings measurement on vibrating airfoils,” in XVII IMEKO World Congress, Dubrovnik, Croatian Metrology Society. Citeseer, 2003, pp. 358–361.
  27. 3D Viscous Flutter in Turbomachinery Cascade by Godunov- Kolgan Method, ser. Turbo Expo: Power for Land, Sea, and Air, vol. Volume 5: Marine; Microturbines and Small Turbomachinery; Oil and Gas Applications; Structures and Dynamics, Parts A and B, 05 2006, doi: 10.1115/GT2006-90157.
  28.  R. Galbraith, M. Gracey, and E. Leith, “Summary of pressure data for thirteen aerofoils on the university of Glasgow’s aerofoil database,” GU Aero report-9221 University of Glasgow, 1992.
Go to article

Authors and Affiliations

Chandra Shekhar Prasad
1
Pavel Šnábl
1
Luděk Pešek
1
ORCID: ORCID

  1. Institute of Thermomechanics of the CAS, Prague, Czech Republic

This page uses 'cookies'. Learn more