Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 3
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

This review covers aspects of soil science and soil biology of Antarctica with special focus on King George Island, South Shetlands, the martitime Antarctic. New approaches in soil descriptions and soil taxonomy show a great variety of soil types, related to different parent material, mainly volcanic origin, as well as on influences by soil biological processes. The spread of higher rooting plants attract microorga nisms, nematodes and collemboles which in turn build new organic material and change the environment for further successors. Microbial communities are drivers with respect to metabolic and physiological properties indicating a great potential in a changing environment. The literature review also shows a lack of investigations on processes of carbon and nitrogen turnover, despite wide knowledge on its standing stock in different environments. Further , only few reports were found on the processes of humification. Only few data are available which can be regarded as long term monitorings, hence, such projects need to be established in order to follow ecological changes.
Go to article

Authors and Affiliations

Manfred Bölter
Download PDF Download RIS Download Bibtex

Abstract

In this paper, we consider the development of reliable tools to assess the water quality and state of aquatic ecosystems in dynamic conditions a crucial need to address. One of such tools could be devised by monitoring the taxonomic structure of reservoirs’ microbiomes. Microbial taxa’s ecological and metabolic characteristics suggest their essential roles in maintaining the water ecosystem’s environmental equilibrium. The study aimed to explainthe role of diversity and seasonal variability of the microbial communities in the ecosystem stability on the example of Goczałkowice Reservoir (Poland). The structure of the reservoir microbiome was studied using bioinformatics and modeling techniques. Water was sampled periodically in July & November 2010, and April 2011 at four representative sites. The abundance and relative fraction of the limnetic taxonomic units were determined in respectto the physicochemical indices. Significant seasonal variations in the number of operational taxonomic units (OTU)were observed within the reservoir basin’s main body but not at the main tributary’s mouth. The highest valuesof the correlation coefficients between OTU and physicochemical variables were obtained for Burkholderiales,Pseudoanabenales, Rickettsiales, Roseiflexales, Methylophilales, Actinomycetales, and Cryptophyta. Thesemicroorganisms are proposed as indicators of environmental conditions and water quality. Metataxonomic analyses of the fresh water microbiome in the reservoir, showed that microorganisms constitute conservative communities that undergo seasonal and local changes regarding the relative participation of the identified taxa. Therefore, we propose that monitoring those variations could provide a reliable measure of the state of aquatic ecosystems.
Go to article

Bibliography

  1. Absalon, D., Matysik, M., Woźnica, A., Łozowski, B., Jarosz, W., Ulańczyk, R., Babczyńska, A. & Pasierbiński, A. (2020). Multi-faceted environmental analysis to improve the quality of anthropogenic water reservoirs (Paprocany reservoir case study). Sensors (Switzerland), 20(9). DOI:10.3390/s20092626
  2. Andersen, M. S. (2007). An introductory note on the environmental economics of the circular economy. Sustainability Science, 2(1), 133–140. https://doi.org/10.1007/s11625-006-0013-6
  3. Anderson-Glenna, M. J., Bakkestuen, V. & Clipson, N. J. W. (2008). Spatial and temporal variability in epilithic biofilm bacterial communities along an upland river gradient. FEMS Microbiology Ecology, 64(3), 407–418. DOI:10.1111/j.1574-6941.2008.00480.x
  4. Aneja, K. (2008). A textbook of basic and applied microbiology. New Age International.
  5. Arora-Williams, K., Olesen, S. W., Scandella, B. P., Delwiche, K., Spencer, S. J., Myers, E. M., Abraham, S., Sooklal, A. & Preheim, S. P. (2018). Dynamics of microbial populations mediating biogeochemical cycling in a freshwater lake 06 Biological Sciences 0605 Microbiology 06 Biological Sciences 0602 Ecology 06 Biological Sciences 0604 Genetics. Microbiome, 6(1), 1–16. DOI:10.1186/s40168-018-0556-7
  6. Babczyńska, A., Tarnawska, M., Łaszczyca, P., Migula, P., Łozowski, B., Woźnica, A. & Augustyniak, M. (2021). Stress proteins concentration in caged Cyprinus carpioas a tool to monitor ecological stability in a model dam reservoir. Archives of Environmental Protection, 47(1), 101-116. DOI:10.24425/aep.2021.136452
  7. Beier, S., Witzel, K.-P. K.-P. & Marxsen, J. (2008). Bacterial community composition in Central European running waters examined by temperature gradient gel electrophoresis and sequence analysis of 16S rRNA genes. Applied and Environmental Microbiology, 74(1), 188–199. DOI:10.1128/AEM.00327-07
  8. Bibby, K., Viau, E. & Peccia, J. (2010). Pyrosequencing of the 16S rRNA gene to reveal bacterial pathogen diversity in biosolids. Water Research, 44(14), 4252–4260. DOI:10.1016/j.watres.2010.05.039
  9. Chao, A., Chiu, C.-H. & Jost, L. (2010). Phylogenetic diversity measures based on Hill numbers. Philosophical Transactions of the Royal Society B: Biological Sciences, 365(1558), 3599–3609. DOI:10.1098/rstb.2010.0272
  10. Chorus, I. & Bartram, J. (1999). Toxic Cyanobacteria in Water: A guide to their public health consequences, monitoring and management.
  11. Cottrell, M. T. & Kirchman, D. L. (2000). Natural assemblages of marine proteobacteria and members of the Cytophaga-Flavobacter cluster consuming low-and high-molecular-weight dissolved organic matter. Applied and Environmental Microbiology, 66(4), 1692–1697.
  12. DeLong, E. F. (2005). Microbial community genomics in the ocean. Nature Reviews. Microbiology, 3(6), 459–469. DOI:10.1038/nrmicro1158
  13. DeLong, E. F. & Béjà, O. (2010). The light-driven proton pump proteorhodopsin enhances bacterial survival during tough times. PLoS Biology, 8(4), 1–5. DOI:10.1371/journal.pbio.1000359
  14. DeLong, E. F., Taylor, L. T., Marsh, T. L. & Preston, C. M. (1999). Visualization and enumeration of marine planktonic archaea and bacteria by using polyribonucleotide probes and fluorescent in situ hybridization. Applied and Environmental Microbiology, 65(12), 5554–5563.
  15. DeSantis, T. Z., Hugenholtz, P., Larsen, N., Rojas, M., Brodie, E. L., Keller, K., Huber, T., Dalevi, D., Hu, P. & Andersen, G. L. (2006). Greengenes, a chimera-checked 16S rRNA gene database and workbench compatible with ARB. Applied and Environmental Microbiology, 72(7), 5069–5072. DOI:10.1128/AEM.03006-05
  16. Eiler, A. & Bertilsson, S. (2004). Composition of freshwater bacterial communities associated with cyanobacterial blooms in four Swedish lakes. Environmental Microbiology, 6(12), 1228–1243. DOI:10.1111/j.1462-2920.2004.00657.x
  17. Falkowski, P. G., Fenchel, T. & Delong, E. F. (2008). The microbial engines that drive earth’s biogeochemical cycles. Science, 320(5879), 1034–1039. DOI:10.1126/science.1153213
  18. Fredricks, D. N. (2006). Introduction to the Rickettsiales and other intracellular prokaryotes. In The Prokaryotes (pp. 457–466). Springer.
  19. Fuhrman, J. a, Schwalbach, M. S. & Stingl, U. (2008). Proteorhodopsins: an array of physiological roles? Nature Reviews. Microbiology, 6(6), 488–494. DOI:10.1038/nrmicro1893
  20. Ghai, R., Hernandez, C. M., Picazo, A., Mizuno, C. M., Ininbergs, K., Díez, B., Valas, R., DuPont, C. L., McMahon, K. D., Camacho, A. & Rodriguez-Valera, F. (2012). Metagenomes of Mediterranean Coastal Lagoons. Scientific Reports, 2, 1–13. DOI:10.1038/srep00490
  21. Ghai, R., Rodŕíguez-Valera, F., McMahon, K. D., Toyama, D., Rinke, R., de Oliveira, T. C. S., Garcia, J. W., de Miranda, F. P. & Henrique-Silva, F. (2011). Metagenomics of the water column in the pristine upper course of the Amazon river. PLoS ONE, 6(8). DOI:10.1371/journal.pone.0023785
  22. Glockner, F. O., Zaichikov, E., Belkova, N., Denissova, L., Pernthaler, J., Pernthaler, A. & Amann, R. (2000). Comparative 16S rRNA analysis of lake bacterioplankton reveals globally distributed phylogenetic clusters including an abundant group of actinobacteria. Applied and Environmental Microbiology, 66(11), 5053–5065. DOI:10.1128/AEM.66.11.5053-5065.2000
  23. Gwiazda, R., Woźnica, A., Łozowski, B., Kostecki, M. & Flis, A. (2014). Impact of waterbirds on chemical and biological features of water and sediments of a large, shallow dam reservoir. Oceanological and Hydrobiological Studies, 43(4). DOI:10.2478/s13545-014-0160-9
  24. Haas, B. J., Gevers, D., Earl, A. M., Feldgarden, M., Ward, D. V., Giannoukos, G., Ciulla, D., Tabbaa, D., Highlander, S. K., Sodergren, E., Methe, B., DeSantis, T. Z., Petrosino, J. F., Knight, R. & Birren, B. W. (2011). Chimeric 16S rRNA sequence formation and detection in Sanger and 454-pyrosequenced PCR amplicons. Genome Research, 21(3), 494–504. DOI:10.1101/gr.112730.110
  25. Hahn, M. W., Kasalicky, V., Jezbera, J., Brandt, U., Jezberova, J. & Simek, K. (2010). Limnohabitans curvus gen. nov., sp. nov., a planktonic bacterium isolated from a freshwater lake. INTERNATIONAL JOURNAL OF SYSTEMATIC AND EVOLUTIONARY MICROBIOLOGY, 60(6), 1358–1365. DOI:10.1099/ijs.0.013292-0
  26. Hahn, M. W., Kasalicky, V., Jezbera, J., Brandt, U. & Simek, K. (2010). Limnohabitans australis sp. nov., isolated from a freshwater pond, and emended description of the genus Limnohabitans. INTERNATIONAL JOURNAL OF SYSTEMATIC AND EVOLUTIONARY MICROBIOLOGY, 60(12), 2946–2950. DOI:10.1099/ijs.0.022384-0
  27. Hodges, B. & Dallimore, C. (2006). Estuary, Lake and Coastal Ocean Model: ELCOM v2. 2 Science Manual. Water, 62. DOI:10.1016/j.ecss.2007.05.033
  28. Jankowiak, J., Hattenrath-Lehmann, T., Kramer, B. J., Ladds, M. & Gobler, C. J. (2019). Deciphering the effects of nitrogen, phosphorus, and temperature on cyanobacterial bloom intensification, diversity, and toxicity in western Lake Erie. Limnology and Oceanography, 64(3), 1347–1370. DOI:10.1002/lno.11120
  29. Kasalicki, V., Jezbera, J., Simek, K., Hahn, M. W., Kasalicky, V., Jezbera, J., Simek, K. & Hahn, M. W. (2010). Limnohabitans planktonicus sp. nov. and Limnohabitans parvus sp. nov., planktonic betaproteobacteria isolated from a freshwater reservoir, and emended description of the genus Limnohabitans. International Journal of Systematic and Evolutionary Microbiology, 60(12), 2710–2714. DOI:10.1099/ijs.0.018952-0
  30. Kostecki, M. (2021). A new antrhropogenic lake Kuźnica Warężyńska: thermal and oxygen conditions after 14 years of exploitation in terms of protection and restoration. Archives of Environmental Protection, 47(2), 115-127. DOI:10.24425/aep.2021.137283
  31. Logares, R., Brate, J., Heinrich, F., Shalchian-Tabrizi, K., Bertilsson, S., Brte, J., Heinrich, F., Shalchian-Tabrizi, K. & Bertilsson, S. (2010). Infrequent transitions between saline and fresh waters in one of the most abundant microbial lineages (SAR11). Molecular Biology and Evolution, 27(2), 347–357. DOI:10.1093/molbev/msp239
  32. Malmstrom, R. R., Kiene, R. P., Vila, M. & Kirchman, D. L. (2005). Dimethylsulfoniopropionate (DMSP) assimilation by Synechococcus in the Gulf of Mexico and northwest Atlantic Ocean. Limnology and Oceanography, 50(6), 1924–1931. DOI:10.4319/lo.2005.50.6.1924
  33. Matysik, M., Absalon, D., Habel, M. & Maerker, M. (2020). Surface water quality analysis using CORINE data: An application to assess reservoirs in Poland. Remote Sensing, 12(6), 16–20. DOI:10.3390/rs12060979
  34. Mendez-Garcia, C., Pelaez, A. I., Mesa, V., Sánchez, J., Golyshina, O. V. & Ferrer, M. (2015). Microbial diversity and metabolic networks in acid mine drainage habitats. Frontiers in Microbiology, 6(475). DOI:10.3389/fmicb.2015.00475
  35. Miller, S. R., Strong, A. L., Jones, K. L. & Ungerer, M. C. (2009). Bar-coded pyrosequencing reveals shared bacterial community properties along the temperature gradients of two alkaline hot springs in Yellowstone National Park. Applied and Environmental Microbiology, 75(13), 4565–4572. DOI:10.1128/AEM.02792-08
  36. Percent, S. F., Frischer, M. E., Vescio, P. A., Duffy, E. B., Milano, V., McLellan, M., Stevens, B. M., Boylen, C. W. & Nierzwicki-Bauer, S. A. (2008). Bacterial community structure of acid-impacted lakes: What controls diversity? Applied and Environmental Microbiology, 74(6), 1856–1868. DOI:10.1128/AEM.01719-07
  37. Pernthalerlr, J., Sattlerl, B., Simek, K., Schwarzenbacherl, A., Psennerl, R., Pernthaler, J., Sattler, B., Šimek, K., Schwarzenbacher, A. & Psenner, R. (1996). Top-down effects on the size-biomass distribution of a freshwater bacterioplankton community. Aquatic Microbial Ecology, 10(3), 255–263. DOI:10.3354/ame010255
  38. Salcher, M. M., Pernthaler, J. & Posch, T. (2011). Seasonal bloom dynamics and ecophysiology of the freshwater sister clade of SAR11 bacteria “that rule the waves” (LD12). The ISME Journal, 5(8), 1242–1252. DOI:10.1038/ismej.2011.8
  39. Sekar, R., Pernthaler, A., Pernthaler, J., Posch, T., Amann, R. & Warnecke, F. (2003). An Improved Protocol for Quantification of Freshwater Actinobacteria by Fluorescence In Situ Hybridization An Improved Protocol for Quantification of Freshwater Actinobacteria by Fluorescence In Situ Hybridization. Applied and Environmental Microbiology, 69(5), 2928–2935. DOI10.1128/AEM.69.5.2928
  40. Smith, V. H., Joye, S. B. & Howarth, R. W. (2006). Eutrophication of freshwater and marine ecosystems. Limnol. Oceanogr., 51(1, part 2), 351–355. DOI:10.4319/lo.2006.51.1_part_2.0351
  41. Stanimirova, I., Woznica, A., Plociniczak, T., Kwasniewski, M. & Karczewski, J. (2016). A modified weighted mixture model for the interpretation of spatial and temporal changes in the microbial communities in drinking water reservoirs using compositional phospholipid fatty acid data. Talanta, 160, 148–156. DOI:10.1016/j.talanta.2016.07.006
  42. Thatoi, H., Behera, B. C., Mishra, R. R. & Dutta, S. K. (2013). Biodiversity and biotechnological potential of microorganisms from mangrove ecosystems: A review. Annals of Microbiology, 63(1), 1–19. DOI:10.1007/s13213-012-0442-7
  43. USEPA. (2006). Method 1680: Fecal Coliforms in Sewage Sludge (Biosolids) by Multiple-Tube Fermentation using Lauryl Tryptose Broth (LTB) and EC Medium. USEPA.
  44. Vaishnava, S., Yamamoto, M., Severson, K. M., Ruhn, K. a, Yu, X., Koren, O., Ley, R., Wakeland, E. K. & Hooper, L. V. (2011). The Antibacterial Lectin RegIII. Science, 334(October), 255–258.
  45. Vila-Costa, M., Simo, R., Harada, H., Gasol, J. M., Slezak, D., Kiene, R. P., Simó, R., Harada, H., Gasol, J. M., Slezak, D. & Kiene, R. P. (2006). Dimethylsulfoniopropionate uptake by marine phytoplankton. Science (New York, N.Y.), 314(5799), 652–654. DOI:10.1126/science.1131043
  46. Wang, Q., Garrity, G. M., Tiedje, J. M. & Cole, J. R. (2007). Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Applied and Environmental Microbiology, 73(16), 5261–5267. DOI:10.1128/AEM.00062-07
  47. Warnecke, F., Amann, R. & Pernthaler, J. (2004). Actinobacterial 16S rRNA genes from freshwater habitats cluster in four distinct lineages. Environmental Microbiology, 6(3), 242–253. DOI:10.1111/j.1462-2920.2004.00561.x
  48. Woznica, A., Nowak, A., Ziemski, P., Kwasniewski, M. & Bernas, T. (2013). Stimulatory Effect of Xenobiotics on Oxidative Electron Transport of Chemolithotrophic Nitrifying Bacteria Used as Biosensing Element. PLoS ONE, 8(1). DOI:10.1371/journal.pone.0053484
  49. Zeng, Y., Kasalický, V., Šimek, K., Koblízek, M., Kasalicky, V., Simek, K. & Koblizek, M. (2012). Genome sequences of two freshwater betaproteobacterial isolates, limnohabitans species strains Rim28 and Rim47, indicate their capabilities as both photoautotrophs and ammonia oxidizers. Journal of Bacteriology, 194(22), 6302–6303. DOI:10.1128/JB.01481-12
  50. Zwart, G., Crump, B. C., Kamst-van Agterveld, M. P., Hagen, F. & Han, S. K. (2002). Typical freshwater bacteria: An analysis of available 16S rRNA gene sequences from plankton of lakes and rivers. Aquatic Microbial Ecology, 28(2), 141–155. DOI:10.3354/ame028141
Go to article

Authors and Affiliations

Andrzej Woźnica
1
Mirosław Kwaśniewski
2
Karolina Chwiałkowska
2
Bartosz Łozowski
1
Damian Absalon
1
Marcin Libera
3
Michał Krzyżowski
1
Agnieszka Babczyńska
1

  1. University of Silesia in Katowice, Faculty of Natural Sciences, Katowice, Poland
  2. Medical University of Bialystok, Faculty of Medicine, Bialystok, Poland
  3. University of Silesia in Katowice, Faculty of Science and Technology, Katowice, Poland
Download PDF Download RIS Download Bibtex

Abstract

Since 1978 the retreat of Ecology Glacier in the vicinity of Henryk Arctowski Station has opened new ice-free areas for colonization by terrestrial organisms initiated by pioneer microbes. Samples were collected from the soil surface, at 0, 5 and 20 cm below surface close to glacier front, then stored at below -20°C . Total bacterial count (TC), estimated by epifluorescence microscopy, reached high values, of 1010 g-1 dry wt. Healthy looking bacterial cells of mean volume 0.0209 µm3 at 0 cm to 0.0292 µm3 at 20 cm made up from 7% at 0 cm , to 30% at 20 cm of total bacterial population. The number of colony forming units (CFU) accounted for only 0.02% of TC. Taxonomically they belonged to the a, b, g subdivisions of the proteobacteria and to the Cytophaga-Flavobacterium-Bacteroides (CFB) group. Morphophysiologically CFU bacteria were diverse, from Gram variable short coccal forms to very long rods or filaments. Randomly selected CFU colonies were characterized by low sugar assimilation and high esterase/lipase activity. Spore forming bacteria – absent from 0 and 5 cm , formed a small fraction of 175 cells g-1 dry wt at the 20 cm depth. Filamentous fungi were relatively abundant and represented mainly by oligotrophs.

Go to article

Authors and Affiliations

Jakub Grzesiak
Magdalena Żmuda−Baranowska
Piotr Borsuk
Marek Zdanowski

This page uses 'cookies'. Learn more