Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 5
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

The phyllosphere refers to the entire aerial habitat of plants while phylloplane describes the entire leaf surface. The phylloplane provides a niche for diversified microbial communities and as such it is an important ecosystem both ecologically and economically. For many years, phylloplane dwellers have been studied as bio protectants and enhancers of growth in host plants. Plants and phylloplane-microbial-interactions result in increased fitness and productivity of agricultural crops. In this study, an attempt was made to compile previous studies in order to better understand the role of phylloplane microbiota in influencing the physiology of flora. We also proposed possible further research to explore molecular aspects of signaling mechanisms established by the phylloplane microbial community with their hosts which impact the latter’s physiology.
Go to article

Bibliography


Abdelrahman M., Abdel-Motaal F., El-Sayed M., Jogaiah S., Shigyo M., Ito S.I., Tran L.S. 2016. Dissection of Trichoderma longibrachiatum-induced defense in onion (Allium cepa L.) against Fusarium oxysporum f. sp. cepa by target metabolite profiling. Plant Science 246: 128–138. DOI: 10.1016/j.plantsci.2016.02.008
Ahmad P., Prasad M.N. 2011. Abiotic stress responses in plants: metabolism, productivity and sustainability. Springer Science and Business Media. DOI: 10.1007/978-1-4614-0634-1
Aisyah S.N., Sulastri S., Retmi R., Yani R.H., Syafriani E., Syukriani L., Fatchiyah F., Bakhtiar A., Jamsari A. 2017. Suppression of Colletotrichum gloeosporioides by Indigenous Phyllobacterium and its compatibility with Rhizobacteria. Asian Journal of Plant Pathology 11 (3): 139–147. DOI: 10.3923/ajppaj.2017.139.147
Alam S.S., Sakamoto K., Amemiya Y., Inubushi K. 2010. Biocontrol of soil-borne Fusarium wilts of tomato and cabbage with a root-colonizing fungus, Penicillium sp. EU0013. p. 1508. In: 19th World Congress of Soil Science, Soil Solutions for a Changing World. 1–6 Aug 2010, Brisbane, Australia.
Andrews J.H., Harris R.F. 2000. The ecology and biogeography of microorganisms on plant surfaces. Annual Review of Phytopathology 38 (1): 145–180. DOI: https://doi.org/10.1146/annurev.phyto.38.1.145
Arnold A.E., Maynard Z., Gilbert G.S., Coley P.D., Kursar T.A. 2000. Are tropical fungal endophytes hyperdiverse? Ecology Letters 3 (4): 267–74. DOI: https://doi.org/10.1046/j.1461-0248.2000.00159.x
Atamna‐Ismaeel N., Finkel O.M., Glaser F., Sharon I., Schneider R., Post A.F., Spudich J.L., von Mering C., Vorholt J.A., Iluz D., Béjà O. 2012. Microbial rhodopsins on leaf surfaces of terrestrial plants. Environmental Microbiology 14 (1): 140–146. DOI: 10.1111/j.1462-2920.2011.02554.x
Baiyee B., Ito S.I., Sunpapao A. 2019. Trichoderma asperellum T1 mediated antifungal activity and induced defense response against leaf spot fungi in lettuce (Lactuca sativa L.). Physiological and Molecular Plant Pathology 106: 96–101. DOI: https://doi.org/10.1016/j.pmpp.2018.12.009
Barda O., Shalev O., Alster S., Buxdorf K., Gafni A., Levy M. 2015. Pseudozyma aphidis induces salicylic-acid-independent resistance to Clavibacter michiganensis in tomato plants. Plant Disease 99 (5): 621–626. DOI: http://dx.doi.org/10.1094/PDIS-04-14-0377-RE
Batool F., Rehman Y., Hasnain S. 2016. Phylloplane associated plant bacteria of commercially superior wheat varieties exhibit superior plant growth promoting abilities. Frontiers in Life Science 9 (4): 313–322. DOI: 10.1080/21553769.2016.1256842
Berger S., Sinha A.K., Roitsch T. 2007. Plant physiology meets phytopathology: plant primary metabolism and plant–pathogen interactions. Journal of Experimental Botany 58 (15–16): 4019–4026. DOI: https://doi.org/10.1093/jxb/erm298
Bodenhausen N., Horton M.W., Bergelson J. 2013. Bacterial communities associated with the leaves and the roots of Arabidopsis thaliana. PloS One 8 (2): e56329. DOI: https://doi.org/10.1371/journal.pone.0056329
Bowatte S., Newton P.C., Brock S., Theobald P., Luo D. 2015. Bacteria on leaves: a previously unrecognised source of N2O in grazed pastures. The ISME Journal 9 (1): 265–267. DOI: https://doi.org/10.1038/ismej.2014.118
Bowes G. 1991. Growth at elevated CO2: photosynthetic responses mediated through Rubisco. Plant, Cell and Environment 14 (8): 795–806. DOI: https://doi.org/10.1111/j.1365-3040.1991.tb01443.x
Braun S.D., Hofmann J., Wensing A., Weingart H., Ullrich M.S., Spiteller D., Völksch B. 2010. In vitro antibiosis by Pseudomonas syringae Pss22d, acting against the bacterial blight pathogen of soybean plants, does not influence in planta biocontrol. Journal of Phytopathology 158 (4): 288–295. DOI: https://doi.org/10.1111/j.1439-0434.2009.01612.x
Bringel F., Couée I. 2015. Pivotal roles of phyllosphere microorganisms at the interface between plant functioning and atmospheric trace gas dynamics. Frontiers in Microbiology 6: 486. DOI: https://doi.org/10.3389/fmicb.2015.00486
Bulgarelli D., Schlaeppi K., Spaepen S., van Themaat E.V., Schulze-Lefert P. 2013. Structure and functions of the bacterial microbiota of plants. Annual Review of Plant Biology 64: 807–838. DOI: https://doi.org/10.1146/annurev-arplant-050312-120106
Buxdorf K., Rahat I., Levy M. 2013. Pseudozyma aphidis induces ethylene-independent resistance in plants. Plant Signaling and Behavior 8 (11): e26273. DOI: 10.4161/psb.26273
Caulier S., Gillis A., Colau G., Licciardi F., Liépin M., Desoignies N., Modrie P., Legrève A., Mahillon J., Bragard C. 2018. Versatile antagonistic activities of soil-borne Bacillus spp. and Pseudomonas spp. against Phytophthora infestans and other potato pathogens. Frontiers in Microbiology 9: 143. DOI: https://doi.org/10.3389/fmicb.2018.00143
Chaudhary D., Kumar R., Sihag K., Kumari A. 2017. Phyllospheric microflora and its impact on plant growth: A review. Agricultural Reviews 38 (1): 51–59. DOI: 10.18805/ag.v0iOF.7308
Chowdappa P., Kumar S.M., Lakshmi M.J., Upreti K.K. 2013. Growth stimulation and induction of systemic resistance in tomato against early and late blight by Bacillus subtilis OTPB1 or Trichoderma harzianum OTPB3. Biological Control 65 (1): 109–117. DOI: 10.1016/j.biocontrol.2012.11.009
Conrath U., Pieterse C.M., Mauch-Mani B. 2002. Priming in plant–pathogen interactions. Trends in Plant Science 7 (5): 210–216. DOI: 10.1016/s1360-1385(02)02244-6
Dara K. 2019. Improving strawberry yields with biostimulants: a 2018–2019 study. eJournal of Entomology and Biologicals. [Available on: https://ucanr.edu/blogs/strawberries-vegetables/index.cfm?tagname=induced%20resistance]
Delaney T.P. 1997. Genetic dissection of acquired resistance to disease. Plant Physiology. 113 (1): 5. DOI: 10.1104/pp.113.1.5
Delmotte N., Knief C., Chaffron S., Innerebner G., Roschitzki B., Schlapbach R., Von Mering C., Vorholt J.A. 2009. Community proteogenomics reveals insights into the physiology of phyllosphere bacteria. Proceedings of the National Academy of Sciences 106 (38): 16428–16433. DOI: https://doi.org/10.1073/pnas.0905240106
Dey S., Wenig M., Langen G., Sharma S., Kugler K.G., Knappe C., Hause B., Bichlmeier M., Babaeizad V., Imani J., Janzik I. 2014. Bacteria-triggered systemic immunity in barley is associated with WRKY and ETHYLENE RESPONSIVE FACTORs but not with salicylic acid. Plant Physiology 166 (4): 2133–2151. DOI: https://doi.org/10.1104/pp.114.249276
Di Mario R.J., Clayton H., Mukherjee A., Ludwig M., Moroney J.V. 2017. Plant carbonic anhydrases: structures, locations, evolution, and physiological roles. Molecular Plant 10 (1): 30–46. DOI: 10.1016/j.molp.2016.09.001
Dong H., Li W., Zhang D., Tang W. 2003. Differential expression of induced resistance by an aqueous extract of killed Penicillium chrysogenum against Verticillium wilt of cotton. Crop Protection 22 (1): 129–134. DOI: 10.1016/S0261-2194(02)00122-9
Dourado M.N., Aparecida Camargo Neves A., Santos D.S., Araújo W.L. 2015. Biotechnological and agronomic potential of endophytic pink-pigmented methylotrophic Methylobacterium spp. BioMed Research International. DOI: 10.1155/2015/909016
El-Sharkawy H.H., Rashad Y.M., Ibrahim S.A. 2018. Biocontrol of stem rust disease of wheat using arbuscular mycorrhizal fungi and Trichoderma spp. Physiological and Molecular Plant Pathology 103: 84–91. DOI: https://doi.org/10.1016/j.pmpp.2018.05.002
Enya J., Shinohara H., Yoshida S., Tsukiboshi T., Negishi H., Suyama K., Tsushima S. 2007. Culturable leaf-associated bacteria on tomato plants and their potential as biological control agents. Microbial Ecology 53 (4): 524–536. DOI: https://doi.org/10.1007/s00248-006-9085-1
Esitken A., Yildiz H.E., Ercisli S., Donmez M.F., Turan M., Gunes A. 2010. Effects of plant growth promoting bacteria (PGPB) on yield, growth and nutrient contents of organically grown strawberry. Scientia Horticulturae 124 (1): 62–66. DOI: 10.1016/j.scienta.2009.12.012
Furnkranz M., Wanek W., Richter A., Abell G., Rasche F., Sessitsch A. 2008. Nitrogen fixation by phyllosphere bacteria associated with higher plants and their colonizing epiphytes of a tropical lowland rainforest of Costa Rica. The ISME Journal 2 (5): 561–570. DOI: https://doi.org/10.1038/ismej.2008.14
Gafni A., Calderon C.E., Harris R., Buxdorf K., Dafa-Berger A., Zeilinger-Reichert E., Levy M. 2015. Biological control of the cucurbit powdery mildew pathogen Podosphaera xanthii by means of the epiphytic fungus Pseudozyma aphidis and parasitism as a mode of action. Frontiers in Plant Science 6: 132. DOI: https://doi.org/10.3389/fpls.2015.00132
Gherbawy Y., El-Tayeb M., Maghraby T., Shebany Y., El-Deeb B. 2012. Response of antioxidant enzymes and some metabolic activities in wheat to Fusarium spp. infections. Acta Agronomica Hungarica 60 (4): 319–333. DOI: 10.1556/AAgr.60.2012.4.3
Giri S., Pati B.R. 2004. A comparative study on phyllosphere nitrogen fixation by newly isolated Corynebacterium sp. & Flavobacterium sp. and their potentialities as biofertilizer. Acta Microbiologica et Immunologica Hungarica 51 (1–2): 47–56. DOI: 10.1556/AMicr.51.2004.1-2.3
Guerrieri R., Vanguelova E.I., Michalski G., Heaton T.H., Mencuccini M. 2015. Isotopic evidence for the occurrence of biological nitrification and nitrogen deposition processing in forest canopies. Global Change Biology 21 (12): 4613–4626. DOI: https://doi.org/10.1111/gcb.13018
Halfeld-Vieira B.D., Vieira Júnior J.R., Romeiro R.D., Silva H.S., Baracat-Pereira M.C. 2006. Induction of systemic resistance in tomato by the autochthonous phylloplane resident Bacillus cereus. Pesquisa Agropecuaria Brasileira 41 (8): 1247–1252. DOI: https://doi.org/10.1590/S0100-204X2006000800006
Harish S., Saravanakumar D., Kamalakannan A., Vivekananthan R., Ebenezar E.G., Seetharaman K. 2007. Phylloplane microorganisms as a potential biocontrol agent against Helminthosporium oryzae Breda de Hann, the incitant of rice brown spot. Archives of Phytopathology and Plant Protection 40 (2): 148–157. DOI: https://doi.org/10.1080/03235400500383651
He C.Y., Hsiang T., Wolyn D.J. 2002. Induction of systemic disease resistance and pathogen defence responses in Asparagus officinalis inoculated with nonpathogenic strains of Fusarium oxysporum. Plant Pathology 51 (2): 225–230. DOI: https://doi.org/10.1046/j.1365-3059.2002.00682.x
Holland M.A. 2011. Nitrogen: give and take from phylloplane microbes. Ecological aspects of nitrogen metabolism in plants. Wiley-Blackwell, London. 28: 217–230. DOI: https://doi.org/10.1002/9780470959404.ch10
Huang S., Millar A.H. 2013. Succinate dehydrogenase: the complex roles of a simple enzyme. Current Opinion in Plant Biology 16 (3): 344–349. DOI: https://doi.org/10.1016/j.pbi.2013.02.007
Hudson G.S., Evans J.R., von Caemmerer S., Arvidsson Y.B., Andrews T.J. 1992. Reduction of ribulose-1,5-bisphosphate carboxylase/oxygenase content by antisense RNA reduces photosynthesis in transgenic tobacco plants. Plant Physiology 98 (1): 294–302. DOI: 10.1104/pp.98.1.294
Innerebner G., Knief C., Vorholt J.A. 2011. Protection of Arabidopsis thaliana against leaf-pathogenic Pseudomonas syringae by Sphingomonas strains in a controlled model system. Applied and Environmental Microbiology 77 (10): 3202–3210. DOI: 10.1128/AEM.00133-11
Jogaiah S., Shetty H.S., Ito S.I., Tran L.S. 2016. Enhancement of downy mildew disease resistance in pearl millet by the G_app7 bioactive compound produced by Ganoderma applanatum. Plant Physiology and Biochemistry 105: 109–117. DOI: https://doi.org/10.1016/j.plaphy.2016.04.006
Jumpponen A., Jones K.L. 2010. Seasonally dynamic fungal communities in the Quercus macrocarpa phyllosphere differ between urban and nonurban environments. New Phytologist 186 (2): 496–513. DOI: https://doi.org/10.1111/j.1469-8137.2010.03197.x
Kamle M., Borah R., Bora H., Jaiswal A.K., Singh R.K., Kumar P. 2020. Systemic acquired resistance (SAR) and induced systemic resistance (ISR): role and mechanism of action against phytopathogens. p. 457–470. In: “Fungal Biotechnology and Bioengineering” (Hesham A.E.-L., Upadhyay R.S., Sharma G.D., Manoharachary C., Gupta V.K., eds.). Springer International Publishing. DOI: 10.1007/978-3-030-41870-0
Kembel S.W., O’Connor T.K., Arnold H.K., Hubbell S.P., Wright S.J., Green J.L. Relationships between phyllosphere bacterial communities and plant functional traits in a neotropical forest. In: Proceedings of the National Academy of Sciences. 23 Sep 2014, USA, 111 (38): 13715-13720. DOI: https://doi.org/10.1073/pnas.1216057111
Kuberan T., Vidhyapallavi R.S, Balamurugan A., Nepolean P., Jayanthi R., Premkumar R. 2012. Isolation and biocontrol potential of phylloplane Trichoderma against Glomerella cingulata in tea. International Journal of Agricultural Technology 8 (3): 1039–1050.
Lindow S.E., Brandl M.T. 2003. Microbiology of the phyllosphere. Applied and Environmental Microbiology 69 (4): 1875–1883. DOI: 10.1128/AEM.69.4.1875-1883.2003
Majeau N., Coleman J.R. 1994. Correlation of carbonic anhydrase and ribulose-1,5-bisphosphate carboxylase/oxygenase expression in pea. Plant Physiology 104 (4): 1393–1399. DOI: https://doi.org/10.1104/pp.104.4.1393
Manching H.C., Balint-Kurti P.J., Stapleton A.E. 2014. Southern leaf blight disease severity is correlated with decreased maize leaf epiphytic bacterial species richness and the phyllosphere bacterial diversity decline is enhanced by nitrogen fertilization. Frontiers in Plant Science 5: 403. DOI: https://doi.org/10.3389/fpls.2014.00403
Marques A.P., Pires C., Moreira H., Rangel A.O., Castro P.M. 2010. Assessment of the plant growth promotion abilities of six bacterial isolates using Zea mays as indicator plant. Soil Biology and Biochemistry 42 (8): 1229–1235. DOI: https://doi.org/10.1016/j.soilbio.2010.04.014
Mathivanan N., Prabavathy V.R., Vijayanandraj V.R. 2008. The effect of fungal secondary metabolites on bacterial and fungal pathogens. Secondary Metabolites in Soil Ecology. Soil Biology 14: 129–140.
Mazinani Z., Zamani M., Sardari S. 2017. Isolation and identification of phyllospheric bacteria possessing antimicrobial activity from Astragalus obtusifolius, Prosopis juliflora, Xanthium strumarium and Hippocrepis unisiliqousa. Avicenna Journal of Medical Biotechnology 9 (1): 31.
Mitra J., Sahi A.N., Paul P.K. 2014. Phylloplane microfungal metabolite influences activity of RuBisCO. Archives of Phytopathology and Plant Protection 47 (5): 584–590. DOI: https://doi.org/10.1080/03235408.2013.814827
Mitra J., Sharma P.D., Paul P.K. 2019. Do phylloplane microfungi influence activity of Rubisco and Carbonic anhydrase. South African Journal of Botany 1 (124): 118–126. DOI: https://doi.org/10.1016/j.sajb.2019.04.033
Mohanty S.R., Dubey G., Ahirwar U., Patra A.K., Kollah B. 2016. Prospect of phyllosphere microbiota: a case study on bioenergy crop Jatropha Curcas. Plant-Microbe Interaction: An Approach to Sustainable Agriculture: 453–462.
Mwajita M.R., Murage H., Tani A., Kahangi E.M. 2013. Evaluation of rhizosphere, rhizoplane and phyllosphere bacteria and fungi isolated from rice in Kenya for plant growth promoters. SpringerPlus 2 (1): 606. DOI: https://doi.org/10.1186/2193-1801-2-606
Nicot P.C. 2011. Classical and Augmentative Biological Control Against Diseases and Pests: Critical Status Analysis and Review of Factors Influencing Their Success. International Organization for Biological and Integrated Control of Noxious Animals and Plants, West Palaearctic Regional Section (IOBC/WPRS), Europe.
O’Brien J.A., Daudi A., Butt V.S., Bolwell G.P. 2012. Reactive oxygen species and their role in plant defence and cell wall metabolism. Planta 236 (3): 765–779. DOI: 10.1007/s00425-012-1696-9
Ortega R.A., Mahnert A., Berg C., Müller H., Berg G. 2016. The plant is crucial: specific composition and function of the phyllosphere microbiome of indoor ornamentals. FEMS Microbiology Ecology 92: 1–12. DOI: https://doi.org/10.1093/femsec/fiw173
Patel M., Kothari I.L., Mohan J.S. 2004. Plant defense induced in in vitro propagated banana (Musa paradisiaca) plantlets by Fusarium, derived elicitors. Indian Journal of Experimental Biology 42 (7): 728–731.
Paul P.K., Mitra J. 2013. Phyllosphere microbes influence Succinate dehydrogenase activity in mitochondria of tomato. p. 92. In: The 19th Australasian Plant Pathology Conference (APPS). 25–28 November 2013, Auckland, New Zealand, 186 pp.
Pieterse C.M., Zamioudis C., Berendsen R.L., Weller D.M., Van Wees S.C., Bakker P.A. 2014. Induced systemic resistance by beneficial microbes. Annual Review of Phytopathology 52: 347–375. DOI: https://doi.org/10.1146/annurev-phyto-082712-102340
Qin S., Zhou W., Lyu D., Liu L. 2014. Effects of soil sterilization and biological agent inoculation on the root respiratory metabolism and plant growth of Cerasus sachalinensis Kom. Scientia Horticulturae 170: 189–195. DOI: https://doi.org/10.1016/j.scienta.2014.03.019
Rastogi G., Sbodio A., Tech J.J., Suslow T.V., Coaker G.L., Leveau J.H. 2012. Leaf microbiota in an agroecosystem: spatiotemporal variation in bacterial community composition on field-grown lettuce. The ISME Journal 6 (10): 1812–1822. DOI: https://doi.org/10.1038/ismej.2012.32
Saleem B., Paul P.K. 2016. Leaf age correlation to phyllosphere, microbe-microbe, plant-microbe interactions on Solanum lycopersicum. Thesis. Amity University, India
Shoresh M., Harman G.E., Mastouri F. 2010. Induced systemic resistance and plant responses to fungal biocontrol agents. Annual Review of Phytopathology 48: 21–43. DOI: https://doi.org/10.1146/annurev-phyto-073009-114450
Shukla S., Sharma R.B. 2016. Diversity of surface mycoflora on Tinospora cordifolia. Indian Journal of Plant Science 5: 42–53.
Singh U.B., Malviya D., Singh S., Pradhan J.K., Singh B.P., Roy M., Imram M., Pathak N., Baisyal B.M., Rai J.P., Sarma B.K. 2016. Bio-protective microbial agents from rhizosphere eco-systems trigger plant defense responses provide protection against sheath blight disease in rice (Oryza sativa L.). Microbiological Research 192: 300–312. DOI: https://doi.org/10.1016/j.micres.2016.08.007
Sowndhararajan K., Marimuthu S., Manian S. 2013. Biocontrol potential of phylloplane bacterium Ochrobactrum anthropi BMO‐111 against blister blight disease of tea. Journal of Applied Microbiology 114 (1): 209–218. DOI: https://doi.org/10.1111/jam.12026
Stiefel P., Zambelli T., Vorholt J.A. 2013. Isolation of optically targeted single bacteria using FluidFM applied to aerobic anoxygenic phototrophs from the phyllosphere. Applied and Environmental Microbiology 79 (16): 4895–4905. DOI: 10.1128/AEM.01087-13
Stone B.W., Weingarten E.A., Jackson C.R. 2018. The role of the phyllosphere microbiome in plant health and function. Annual Plant Reviews 1 (2): 533–556. DOI: https://doi.org/10.1002/9781119312994.apr0614
Su P., Tan X., Li C., Zhang D., Cheng J.E., Zhang S., Zhou X., Yan Q., Peng J., Zhang Z., Liu Y. 2017. Photosynthetic bacterium Rhodopseudomonas palustris GJ‐22 induces systemic resistance against viruses. Microbial Biotechnology 10 (3): 612–624. DOI: 10.1111/1751-7915.12704
Suguna S., Parthasarathy S., Karthikeyan G. 2020. Induction of systemic resistant molecules in phylloplane of rice plants against Magnaporthe oryzae by Pseudomonas fluorescens. International Research Journal of Pure and Applied Chemistry 21 (3): 25–36. DOI: https://doi.org/10.9734/irjpac/2020/v21i330158
Sun P.F., Fang W.T., Shin L.Y., Wei J.Y., Fu S.F., Chou J.Y. 2014. Indole-3-acetic acid-producing yeasts in the phyllosphere of the carnivorous plant Drosera indica L. PloS One 9 (12): e114196. DOI: https://doi.org/10.1371/journal.pone.0114196
Sunderhaus S., Dudkina N.V., Jänsch L., Klodmann J., Heinemeyer J., Perales M., Zabaleta E., Boekema E.J., Braun H.P. 2006. Carbonic anhydrase subunits form a matrix-exposed domain attached to the membrane arm of mitochondrial complex I in plants. Journal of Biological Chemistry 281 (10): 6482–6488. DOI: 10.1074/jbc.M511542200
Thakur S. 2016. Application of phylloplane fungi to manage the leaf spot of Rauwolfia serpentina caused by Alternaria alternata. International Journal of Life Sciences Scientific Research 2 (2): 163–172.
Toivonen P.M., Hodges D.M. 2011. Abiotic stress in harvested fruits and vegetables. p. 39–58. In: “Abiotic Stress in Plants-Mechanisms and Adaptations” (A. Shanker, ed.). InTech, China. DOI: 10.5772/22524
Toyota K., Shirai S. 2018. Growing interest in microbiome research unraveling disease suppressive soils against plant pathogens. Microbes and Environments 33 (4): 345–347. DOI: 10.1264/jsme2.ME3304rh
Turner T.R., James E.K., Poole P.S. 2013. The plant microbiome. Genome Biology 14 (6): 209. DOI: https://doi.org/10.1186/gb-2013-14-6-209
van Wees S.C., de Swart E.A., van Pelt J.A., van Loon L.C., Pieterse C.M. 2000. Enhancement of induced disease resistance by simultaneous activation of salicylate- and jasmonate- dependent defense pathways in Arabidopsis thaliana. Proceedings of the National Academy of Sciences 97 (15): 8711–8716. DOI: https://doi.org/10.1073/pnas.130425197
Voříšková J., Baldrian P. 2013. Fungal community on decomposing leaf litter undergoes rapid successional changes. The ISME Journal 7 (3): 477–486. DOI: https://doi.org/10.1038/ismej.2012.116
Wang L.F, Wang M., Zhang Y. 2014. Effects of powdery mildew infection on chloroplast and mitochondrial functions in rubber tree. Tropical Plant Pathology 39 (3): 242–250. DOI: http://dx.doi.org/10.1590/S1982-56762014000300008
Watanabe K., Kohzu A., Suda W., Yamamura S., Takamatsu T., Takenaka A., Koshikawa M.K., Hayashi S., Watanabe M. 2016. Microbial nitrification in throughfall of a Japanese cedar associated with archaea from the tree canopy. Springer Plus 5: 1596. DOI: https://doi.org/10.1186/s40064-016-3286-y
Whipps J., Hand P., Pink D., Bending G.D. 2008. Phyllosphere microbiology with special reference to diversity and plant genotype. Journal of Applied Microbiology 105 (6): 1744–1755. DOI: https://doi.org/10.1111/j.1365-2672.2008.03906.x
Yadav R.K., Kakamanoli K., Vokou D. 2010. Estimating bacterial population on the phyllosphere by serial dilution plating and leaf imprint methods. Ecoprint: An International Journal of Ecology 17: 47–52. DOI: https://doi.org/10.3126/eco.v17i0.4105
Yadav S.L., Mishra A.K., Dongre P.N., Singh R. 2011. Assessment of fungitoxicity of phylloplane fungi against Alternaria brassicae causing leaf spot of mustard. Journal of Agricultural Technology 7 (6): 1823–1831.
Zhou L.S., Tang K., Guo S.X. 2018. The plant growth-promoting fungus (PGPF) Alternaria sp. A13 markedly enhances Salvia miltiorrhiza root growth and active ingredient accumulation under greenhouse and field conditions. International Journal of Molecular Sciences 19 (1): 270. DOI: https://doi.org/10.3390/ijms19010270
Go to article

Authors and Affiliations

Susmita Goswami
1
ORCID: ORCID
Navodit Goel
1
Rita Singh Majumdar
2

  1. Amity University Uttar Pradesh, Noida, Uttar Pradesh, India
  2. Department of Biotechnology, Sharda University, Greater Noida, Uttar Pradesh, India
Download PDF Download RIS Download Bibtex

Abstract

I n t r o d u c t i o n: Interactions between oral microbiota and systemic diseases have been suggested. We aimed to examine the composition of oral microbiota with reference to antioxidative defense and its correlation with clinical state in Crohn’s disease (CD) in comparison to ulcerative colitis (UC).

Ma t e r i a l s a n d Me t h o d s: Smears were taken from the buccal and tongue mucosa of patients with CD, UC and controls, and cultured with classical microbiology methods. Bacterial colonies were identified using matrix-assisted laser desorption/ionization (MALDI) with a time-of-flight analyzer (TOF). Blood morphology and C-reactive protein (CRP) were analyzed in the hospital laboratory. Antioxidative defense potential (FRAP) was determined using spectrophotometry in saliva and serum.

R e s u l t s: Oral microbiota in CD patients were characterized by lower diversity in terms of the isolated bacteria species compared to UC and this correlated with reduced FRAP in the oral cavity and intensified systemic infl ammation. Oral microbiota composition in CD did not depend on the applied treatment. In CD patients, a negative correlation was observed between the FRAP value in saliva and serum and the CRP value in serum. Individual differences in the composition of oral microbiota suggest that different bacteria species may be involved in the induction of oxidative stress associated with a weakening of antioxidative defense in the oral cavity, manifested by ongoing systemic inflammation.

C o n c l u s i o n s: Analysis of both the state of the microbiota and antioxidative defense of the oral cavity, as well as their referencing to systemic inflammation may potentially prove helpful in routine diagnostic applications and in aiding a better understanding of CD and UC pathogenesis associated with oral microbiota.

Go to article

Authors and Affiliations

Katarzyna Szczeklik
Danuta Owczarek
Dorota Cibor
Marta Cześnikiewicz-Guzik
Paweł Krzyściak
Agnieszka Krawczyk
Tomasz Mach
Elżbieta Karczewska
Wirginia Krzyściak
Download PDF Download RIS Download Bibtex

Abstract

The aggregate of various taxonomic groups of microorganisms colonising living organisms is known as the microbiome. The plant microbiome encompasses a wide network of biological, chemical and metabolic interactions between the plant and microorganisms (mainly algae, bacteria and protozoa). The relationships between microbes and peatland plants, particularly carnivorous plants, are a very interesting subject that is still little understood. Microbes colonising carnivorous peatland plants may be present in their traps or on the surface of the plant. Previous research on the relationships between the microbiome composition of carnivorous plants and the external factors influencing it directly and indirectly is still inadequate. There is a lack of review articles analysing the current state of knowledge regarding carnivorous plant–microbiome interactions. This review of the literature is a collection of data on the functioning of the microbiome of carnivorous plants growing in peatland ecosystems. In addition, it summarises the available information on host–microorganism relationships.
Go to article

Authors and Affiliations

Aleksandra Bartkowska
1
ORCID: ORCID
Tomasz Mieczan
1
ORCID: ORCID

  1. University of Life Sciences, Department of Hydrobiology and Protection of Ecosystems, Dobrzańskiego 37, 20-262 Lublin, Poland
Download PDF Download RIS Download Bibtex

Abstract

Erythritol (ERT) and L-ascorbyl-2-phosphate (APS) are bacteriostatic, but their effects on staphylococcal skin infections remain unknown. We aimed to determine whether ERT combined with APS inhibits the growth of staphylococci that are commonly isolated from pyoderma skin lesions in dogs. We investigated the individual and combined effects of ERT and APS on the growth of Staphylococcus pseudintermedius, S. schleiferi, and S. aureus using turbidity assays in vitro. Skin lesions from 10 dogs with superficial pyoderma were topically treated with 5% ERT and 0.1% APS for 28 days, and swabbed skin samples were then analyzed using 16S rRNA amplicon sequencing and quantitative real-time PCR (qPCR). Results showed that ERT inhibited S. pseudintermedius growth regardless of harboring the mecA gene, and APS increased the inhibitory effects of ERT against S. pseudintermedius, S. schleiferi, and S. aureus in vitro. Moreover, combined ERT and APS decreased the prevalence of staphylococci on canine skin lesions at the genus level. The combination slightly increased the α-diversity but did not affect the β-diversity of the microbiota. The qPCR results revealed that the combination significantly decreased S. pseudintermedius and S. schleiferi in skin lesions. Topical administration of EPS combined with APS can prevent staphylococcal colonization on the surface of mammalian skin. The results of this study may provide an alternative to systemic antibiotics for treating superficial pyoderma on mammalian skin surfaces.
Go to article

Bibliography

1. Akiyama H, Oono T, Huh WK, Yamasaki O, Katsuyama M, Shigeyuki O, Ichikawa H, Iwatsuki K (2002) Actions of farnesol and xyli-tol against Staphylococcus aureus. Chemotherapy 48: 122-128.
2. Bradley CW, Morris DO, Rankin SC, Cain CL, Misic AM, Houser T, Mauldin EA, Grice EA (2016) Longitudinal evaluation of the skin microbiome and association with microenvironment and treatment in canine atopic dermatitis. J Invest Dermatol 136: 1182-1190.
3. Dean I, Jackson F, Greenough RJ (1996) Chronic (1-year) oral toxicity study of erythritol in dogs. Regul Toxicol Pharmacol 24: S254-S260.
4. Drago L, Del Fabbro M, Bortolin M, Vassena C, De Vecchi E, Taschieri S (2014) Biofilm removal and antimicrobial activity of two dif-ferent air-polishing powders: an in vitro study. J Periodontol 85: e363-e369.DuHadway MR, Sharp CR, Meyers KE, Koenigshof AM. (2015) Retrospective evaluation of xylitol ingestion in dogs: 192 cases (2007-2012). J Vet Emerg Crit Care (San Antonio). 25: 646-654.
5. Fujii T, Inoue S, Kawai Y, Tochio T, Takahashi K (2022) Suppression of axillary odor and control of axillary bacterial flora by erythritol. J Cosmet Dermatol 21: 1224-1233.
6. González-Domínguez MS, Carvajal HD, Calle-Echeverri DA, Chinchilla-Cárdenas D. (2020) Molecular detection and characterization of the mecA and nuc genes From Staphylococcus species (S. aureus, S. pseudintermedius, and S. schleiferi) isolated from dogs suffering superficial pyoderma and their antimicrobial resistance profiles. Front Vet Sci 7: 376.
7. Hashino E, Kuboniwa M, Alghamdi SA, Yamaguchi M, Yamamoto R, Cho H, Amano A (2013) Erythritol alters microstructure and metabolomic profiles of biofilm composed of Streptococcus gordonii and Porphyromonas gingivalis. Mol Oral Microbiol 28: 435-451.
8. Ikeno H, Apel M, Zouboulis C, Luger TA, Böhm M (2015) L-ascorbyl-2-phosphate attenuates NF-κB signaling in SZ95 sebocytes without affecting IL-6 and IL-8 secretion. Arch Dermatol Res 307: 595-605.
9. Iwasaki T, Nagata M, Ohmuro T, Ando J (2008) Validation of a novel guideline for clinical trial of antimicrobials in canine bacterial py-oderma. Jpn J Vet Dermatol 14: 71-75.
10. Japanese Ministry of Health, Labour and Welfare Good Clinical Practice. Ministry of Health, Labour and Welfare Ministerial Ordinance, No. 28 dated March 27, 1997, and No. 24 dated February 29, 2008. Tokyo, Japan.(https://www.pmda.go.jp/files/000152996.pdf)
11. Kang S, Amagai M, Bruckner AL, Enk AH, Margolis DJ, McMichael AJ, Orringer JS (2019) Fitzpatrick’s Dermatology. 9th ed., McGraw-Hill Education, Chapter 150.
12. Kawakami T, Shibata S, Murayama N, Nagata M, Nishifuji K, Iwasaki T, Fukata T (2010) Antimicrobial susceptibility and methicillin resistance in Staphylococcus pseudintermedius and Staphylococcus schleiferi subsp. coagulans isolated from dogs with pyoderma in Ja-pan. J Vet Med Sci 72: 1615-1619.
13. Kong HH, Oh J, Deming C, Conlan S, Grice EA, Beatson MA, Nomicos E, Polley EC, Komarrow HD, NISC CSP, Murray PR, Turner ML, Segre JA (2012) Temporal shifts in the skin microbiome associated with disease flares and treatment in children with atopic dermati-tis. Genome Res 22: 850-859.
14. Miyasawa-Hori H, Aizawa S, Takahashi N (2006) Difference in the xylitol sensitivity of acid production among Streptococcus mutans strains and the biochemical mechanism. Oral Microbiol Immunol 21: 201-205.
15. Murray C, Ahrens K, Devalaraja M, Dymond M, Fagura M, Hargreaves A, Holt A, Peers I, Price S, Reens J, Riley R, Marsella R (2016) Use of a canine model of atopic dermatitis to investigate the efficacy of a CCR4 antagonist in allergen-induced skin inflammation in a randomized study. J Invest Dermatol 136: 665-671.
16. Nakakuki T (2003) Development of functional oligosaccharides in Japan. Trends Glycosci Glycotechnol 82: 57-64.
17. Nayama S, Takehana M, Kanke M, Itoh S, Ogata E, Kobayashi S (1999) Protective effects of sodium-L-ascorbyl-2 phosphate on the de-velopment of UVB-induced damage in cultured mouse skin. Biol Pharm Bull 22: 1301-1305.
18. Norström M, Sunde M, Tharaldsen H, Mørk T, Bergsjø B, Kruse H (2009) Antimicrobial resistance in Staphylococcus pseudintermedi-us in the Norwegian dog population. Microb Drug Resist 15: 55-59.
19. Rafeek R, Carrington CVF, Gomez A, Harkins D, Torralba M, Kuelbs C, Addae J, Moustafa A, Nelson KE (2019) Xylitol and sorbitol effects on the microbiome of saliva and plaque. J Oral Microbiol 11: 1536181. 20. Santoro D (2023) Topical therapy for canine pyoderma: what is new? J Am Vet Med Assoc. 261: S140-S148.
21. Scott DW (2007) Color atlas of farm animal dermatology. 2nd ed., Wiley-Blackwell.
22. Shannon CE (1948) A mathematical theory of communication. Bell Syst Tech J 27: 379-423.
23. Söderling E, ElSalhy M, Honkala E, Fontana M, Flannagan S, Eckert G, Kokaras A, Paster B, Tolvalen M, Honkala S (2015) Effects of short-term xylitol gum chewing on the oral microbiome. Clin Oral Investig 19: 237-244.
24. Söderling E, Pienihäkkinen K (2020) Effects of xylitol and erythritol consumption on mutans streptococci and the oral microbiota: a sys-tematic review. Acta Odontol Scand 78: 599-608.
25. Woolery-Lloyd H, Baumann L, Ikeno H (2010) Sodium L-ascorbyl-2-phosphate 5% lotion for the treatment of acne vulgaris: A ran-domized, double-blind, controlled trial. J Cosmet Dermatol 9: 22-27.
Go to article

Authors and Affiliations

T. Tochio
1 2
K. Kawano
2 3
K. Iyori
4
R. Makida
1
Y. Kadota
1
T. Fujii
1
H. Ishikawa
5
T. Yasutake
5
A. Watanabe
2
K. Funasaka
2
Y. Hirooka
2
K. Nishifuji
6

  1. B Food Science Co., Ltd., 24-12, Kitahama-machi, Chita, Aichi 478-0046, Japan
  2. Department of Gastroenterology and Hepatology, Fujita Health University, Toyoake, Aichi 470-1192, Japan
  3. Tokyo Animal Allergy Center, 4-23-15, Kurihara, Adachi-ku, Tokyo 123-0842, Japan
  4. Vet Derm Tokyo, Dermatological and Laboratory Service for Animals, 910 Shoubusawa, Fujisawa, Kanagawa 252-0823, Japan
  5. Healthcare Systems Co., Ltd., Nagoya Aichi, 466-0058, Japan
  6. Division of Animal Life Science, Institute of Agriculture, Graduate School, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, Tokyo 183-8509, Japan
Download PDF Download RIS Download Bibtex

Abstract

Erythritol helps both prevent and improve periodontal disease and is therefore widely used for dental care in humans. However, only a few studies have investigated the effects of erythritol on periodontal disease in animals. We hypothesized that erythritol could be used to prevent and improve periodontal disease also in canines and investigated the effects of erythritol on canine periodontal disease–related pathogenic bacteria using both in vitro and in vivo methods.
The effect of erythritol on the proliferation of Porphyromonas gulae, which is reportedly associated with canine periodontal disease, was investigated in vitro. In addition, a 4-week intervention trial using an external gel preparation containing 5% erythritol was performed in canines with mild periodontal disease; changes in the microbiota around periodontal lesions were investigated using next-generation sequencing and bioinformatics analysis.
The growth of P. gulae was significantly suppressed by erythritol in vitro. In the intervention study, the Shannon index, an indicator of the species distribution α-diversity, and the occupancy of several canine periodontal disease – related bacteria ( P. gulae, P. cangingivalis) were significantly decreased in periodontal lesions.
Based on the results of in vitro and in vivo studies, we conclude that, as in humans, erythritol has bacteriostatic effects against periodontal disease – related bacteria in canines.
Go to article

Bibliography

Allaker RP, Young KA, Langlois T, Rosayro RD, Hardie JM (1997) Dental plaque flora of the dog with reference to fastidious and anaerobic bacteria associated with bites. J Vet Dent 14: 127-130.
Bellows J, Berg ML, Dennis S, Harvey R, Lobprise HB, Snyder CJ, Stone AES, Van de Wetering AG (2019) AAHA Dental Care Guidelines for Dogs and Cats. J Am Anim Hosp Assoc 55: 49-69.
Chen Y, Liao K, Ai L, Guo P, Huang H, Wu Z, Liu M (2017) Bacteremia caused by Bergeyella zoohelcum in an infective endocarditis patient: case report and review of literature. BMC Infect Dis 17: 271.
Dean I, Jackson F, Greenough RJ (1996) Chronic (1-year) oral toxicity study of erythritol in dogs. Regul Toxicol Pharmacol 24: S254-S260.
de Cock P (2018) Erythritol functional roles in oral-systemic health. Adv Dent Res 29: 104-109.
de Cock P, Mäkinen K, Honkala E, Saag M, Kennepohl E, Eapen A (2016) Erythritol is more effective than xylitol and sorbitol in managing oral health endpoints. Int J Dent 2016: 9868421.
Dos Santos JD, Cunha E, Nunes T, Tavares L, Oliveira M (2019) Relation between periodontal disease and systemic diseases in dogs. Res Vet Sci 125: 136-140.
Eubanks DL (2010) Periodontal disease assessment. J Vet Dent 27: 58-60.
Gu Y, Fujitomo Y, Ohmagari N (2021) Outcomes and Future Prospect of Japan’s National Action Plan on Antimicrobial Resistance (2016-2020). Antibiotics 10: 1293.
Hashino E, Kuboniwa M, Alghamdi SA, Yamaguchi M, Yamamoto R, Cho H, Amano A (2013) Erythritol alters microstructure and metabolomic profiles of biofilm composed of Streptococcus gordonii and Porphyromonas gingivalis. Mol Oral Microbiol 28: 435-451.
Kortegaard HE, Eriksen T, Baelum V (2008) Periodontal disease in research beagle dogs-an epidemiological study. J Small Anim Pract 49: 610-616.
Kuzuya T, Kanazawa Y, Kosaka K (1969) Stimulation of insulin secretion by xylitol in dogs. Endocrinology 84: 200-207.
Lozupone CA, Hamady M, Kelley ST, Knight R (2007) Quantitative and qualitative beta diversity measures lead to different insights into factors that structure microbial communities. Appl Environ Microbiol 73: 1576-1585.
Munro IC, Berndt WO, Borzelleca JF, Flamm G, Lynch BS, Kennepohl E, Bär E A, Modderman J (1998) Erythritol: an interpretive summary of biochemical, metabolic, toxicological and clinical data. Food Chem Toxicol 36: 1139-1174.
Muramatsu Y, Haraya N, Horie K, Uchida L, Kooriyama T, Suzuki A, Horiuchi M (2019) Bergeyella zoohelcum isolated from oral cavities of therapy dogs. Zoonoses Public Health 66: 936-942.
Murphy LA, Coleman AE (2012) Xylitol toxicosis in dogs. Vet Clin North Am Small Anim Pract 42: 307-312.
Nakakuki T (1998) Development of functional oligosaccharides in Japan. Trends Glycosci. Glycotechnol. 178: 19-28.
Noda K, Nakayama K, Modderman J (1996) Fate of erythritol after single oral administration to rats and dogs. Regul Toxicol Pharmacol 24: S206-S213.
Nomura R, Inaba H, Yasuda H, Shirai M, Kato Y, Murakami M, Iwashita N, Shirahata S, Yoshida S, Matayoshi S, Yasuda J, Arai N, Asai F, Matsumoto-Nakano M, Nakano K (2020) Inhibition of Porphyromonas gulae and periodontal disease in dogs by a combination of clindamycin and interferon alpha. Sci Rep 10: 3113.
Nomura R, Shirai M, Kato Y, Murakami M, Nakano K, Hirai N, Mizusawa T, Naka S, Yamasaki Y, Matsumoto-Nakano M, Ooshima T, Asai F (2012) Diversity of fimbrillin among Porphyromonas gulae clinical isolates from Japanese dogs. J Vet Med Sci 74: 885-891.
Sarkiala E, Harvey C (1993) Systemic antimicrobials in the treatment of periodontitis in dogs. Semin Vet Med Surg Small Anim 8: 197-203.
Senhorinho GN, Nakano V, Liu C, Song Y, Finegold SM, Avila-Campos MJ (2011) Detection of Porphyromonas gulae from subgingival biofilms of dogs with and without periodontitis. Anaerobe 17: 257-258.
Shannon CE (1949) A mathematical theory of communication. Bell Syst Tech J 27: 379-423.
Shoukry M, Ben AL, Abdel NM, Soliman A. (2007) Repair of experimental plaque-induced periodontal disease in dogs. J Vet Dent 24: 152-165.
Yumoto T, Kowada T, Sumiya F, Matsumoto T, Fujita K, Yamamura H, Sakai T (2004) Surgery and bacteria isolation in treating severe periodontal disease in old dogs. J Jpn Vet Med Assoc 57: 41-45.
Go to article

Authors and Affiliations

T. Tochio
1 2
R. Makida
1
T. Fujii
1
Y. Kadota
1
M. Takahashi
1
A. Watanabe
2
K. Funasaka
2
Y. Hirooka
2
A. Yasukawa
3
K. Kawano
2 4

  1. B Food Science Co., Ltd., 24-12, Kitahama-machi, Chita, Aichi 478-0046, Japan
  2. Department of Gastroenterology and Hepatology, Fujita Health University, Toyoake, Aichi 470-1192, Japan
  3. Kamishakujii Veterinary Medical Hospital, 1-4-13, Sekimachi-Higashi, Nerima-ku, Tokyo 177-0052, Japan
  4. Tokyo Animal Allergy Center, 4-23-15, Kurihara, Adachi-ku, Tokyo 123-0842, Japan

This page uses 'cookies'. Learn more