Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 2
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

Promising cooling systems for high-power electronic elements are those based on vapor chambers and heat pipes which allow for the local heat flow to be dispersed from the electronic element to a larger surface area of the vapor chamber or the heat pipe. To reduce the thermal resistance of the cooling system, a finned radiator is installed on the outer surface of the vapor chamber or heat pipe. The authors propose a new design of the radiator which increases the heat transfer efficiency. The paper presents results of numerical simulation of heat transfer and aerodynamic resistance of the heat transfer surface with lamellar-split finning. The comparative analysis of heat transfer and aerodynamics was carried out for three types of radiators: with lamellar smooth finning, with lamellar split finning and with the sections of split finning rotated 30◦ against the air flow. It is shown that cutting the fins and rotating the split sections leads to an increase in heat transfer intensity and increase in aerodynamic resistance. The obtained results may be useful in the design of cooling systems for computer processors, power amplifiers for transmitting modules, energy-saving solid-state light sources, etc.

Go to article

Authors and Affiliations

Yurii Nikolaenko
Aleksandr Baranyuk
Valerii Rohachov
Aleksandr Terekh
Download PDF Download RIS Download Bibtex

Abstract

In this research work, a Cylindrical Surrounding Double-Gate (CSDG) MOSFET design in a stacked-Dual Metal Gate (DMG) architecture has been proposed to incorporate the ability of gate metal variation in channel field formation. Further, the internal gate's threshold voltage (VTH1) could be reduced compared to the external gate (VTH2) by arranging the gate metal work-function in Double Gate devices. Therefore, a device design of CSDG MOSFET has been realized to instigate the effect of Dual Metal Gate (DMG) stack architecture in the CSDG device. The comparison of device simulation shown optimized electric field and surface potential profile. The gradual decrease of metal work function towards the drain also improves the Drain Induced Barrier Lowering (DIBL) and subthreshold characteristics. The physics-based analysis of gate stack CSDG MOSFET that operates in saturation involving the analogy of cylindrical dual metal gates has been considered to evaluate the performance improvements. The insights obtained from the results using the gate-stack dual metal structure of CSDG are quite promising, which can serve as a guide to further reduce the threshold voltage roll-off, suppress the Hot Carrier Effects (HCEs) and Short Channel Effects (SCEs).
Go to article

Authors and Affiliations

Abha Dargar
1
Viranjay M. Srivastava
1

  1. Department of Electronic Engineering, Howard College, University of KwaZulu-Natal, Durban, 4041, South Africa

This page uses 'cookies'. Learn more