Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 15
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

The paper raises the issue of controlling rural low voltage microgrids in an optimal manner. The impact of different criterion functions, related to the amount of energy exchanged with the distribution system operator network, the level of active power losses, the amount of energy generated by different energy sources and the value of financial performance measures regarding the microgrid operation, on the choice of operating points for devices suggested by the optimization algorithm has been analyzed. Both island and synchronous microgrid operation modes are being considered. We propose two variants of the optimization procedure: the first one is based on the particle swarm optimization algorithm and centralized control logic, and the second one takes advantage of the decentralized approach and Monte Carlo methods. A comparison of the simulation results for two sample rural microgrids, obtained for different objective functions, microgrid operation modes and optimization procedure variants, with the use of prepared algorithm implementations, has been provided. The results show that the proper choice of an objective function can have a crucial impact on the optimization algorithm’s behavior, the choice of operating points and, as a consequence, on microgrid behavior as well. The choice of the proper form of the objective function is the responsibility of the person in charge of both the microgrid itself and its operation. This paper can contribute towards making correct decisions in this area. Generally, slightly better results have been achieved for the centralized control mode of operation. Nevertheless, the results also suggest that in many cases the approach based on distributed logic can return results that are better or sufficiently close to the ones provided by the centralized and more sophisticated approach.

Go to article

Authors and Affiliations

M. Parol
Ł. Rokicki
R. Parol
Download PDF Download RIS Download Bibtex

Abstract

Low voltage microgrids are autonomous subsystems, in which generation, storage and power and electrical energy consumption appear. In the paper the main attention has been paid to the voltage stability issue in low voltage microgrid for different variants of its operation. In the introduction a notion of microgrid has been presented, and also the issue of influence of active and reactive power balance on node voltage level has been described. Then description of voltage stability issue has been presented. The conditions of voltage stability and indicators used to determine voltage stability margin in the microgrid have been described. Description of the low voltage test microgrid, as well as research methodology along with definition of considered variants of its operation have been presented further. The results of exemplary calculations carried out for the daily changes in node load of the active and reactive power, i.e. the voltage and the voltage stability margin indexes in nodes have been presented. Furthermore, the changes of voltage stability margin indexes depending on the variant of the microgrid operation have been presented. Summary and formulation of conclusions related to the issue of voltage stability in microgrids have been included at the end of the paper.
Go to article

Authors and Affiliations

Mirosław Parol
Łukasz Rokicki
Download PDF Download RIS Download Bibtex

Abstract

In this paper, a novel Power-Frequency Droop Control (PFDC) is introduced to perfectly bring back the system frequency and share the reactive power in isolated microgrid with virtual power plant (VPP). The frequency-based power delivery must be essentially implemented in VPP which can operate as a conventional synchronous generator. It has been attained by enhancing the power processing unit of each VPP to operate as an active generator. The inverter coupling impedance which has been assigned by the virtual impedance technique has reduced the affected power coupling resulting from line resistance. The reference has been subsequently adjusted to compensate the frequency deviation caused by load variation and retrieve the VPP frequency to its nominal value. In addition, the line voltage drop has compensated the voltage drop and load sharing error to obliterate the reactive power sharing imprecision resulting from the voltage deviation. The voltage feedback confirms the correct voltage after compensating the voltage drop. As an illustration, conventional PFDC after a load change cannot restore the system frequency which is deviated from 50 Hz and rested in 49.9 Hz while, proposed PFDC strategy fades away the frequency deviation via compensating the variation of the frequency reference. Likewise, the frequency restoration factor ( γ) has an effective role in retrieving the system frequency, i.e., the restoration rate of the system frequency is in proportion with γ. As a whole, the simulation results have pointed to the high performance of proposed strategy in an isolated microgrid.
Go to article

Bibliography

  1.  G.U. Atmo, C.F. Duffield, and D. Wilson, “Structuring procurement to improve sustainability outcomes of power plant projects”, Energy Technol. Policy 2(1), 47‒57 (2015).
  2.  P. Kumar, P.S. Sikder, and N. Pal, “Biomass fuel cell based distributed generation system for Sagar Island”, Bull. Pol. Ac.: Tech. 66(5), 665‒674 (2018).
  3.  M. Wieczorek, M. Lewandowski, and W. Jefimowski, “Cost comparison of different configurations of a hybrid energy storage system with battery-only and supercapacitor-only storage in an electric city bus”, Bull. Pol. Ac.: Tech. 44(6), 1095‒1106 (2019).
  4.  W. Marańda and M. Piotrowicz, “Efficiency of maximum power point tracking in photovoltaic system under variable solar irradiance”, Bull. Pol. Ac.: Tech. 62(4), 713‒721 (2014).
  5.  U. Akram, M. Khalid, and S. Shafiq, “An innovative hybrid wind-solar and battery-supercapacitor microgrid system-development and optimization”, IEEE Access 5(10), 25897‒25912 (2017).
  6.  M.A. Hannan, M.G.M. Abdolrasol, M. Faisal, P.J. Ker, R.A. Begum, and A. Hussain, “Binary particle swarm optimization for scheduling MG integrated virtual power plant toward energy saving”, IEEE Access 7(6), 107937‒07951 (2019).
  7.  T. Wu, Z. Liu, and J. Liu, “A unified virtual power decoupling method for droop-controlled parallel inverters in microgrids”, IEEE Trans. Power Electron. 31(8), 5587‒5603 (2016).
  8.  F. Shahnia and A. Ghosh, “Coupling of neighbouring low voltage residential distribution feeders for voltage profile improvement using power electronics converters”, IET Renew. Power Gener. 10(2), 535‒547 (2016).
  9.  X. Tang, X. Hu, and N. Li, “A novel frequency and voltage control method for islanded based on multienergy storages”, IEEE Trans. Smart Grid 7(1), 410‒419 (2016).
  10.  H. Zhang, S. Kim, Q. Sun, and J. Zhou, “Distributed adaptive virtual impedance control for accurate reactive power sharing based on consensus control in microgrids”, IEEE Trans. Smart Grid 8(4), 1749‒1761 (2017).
  11.  M. Eskandari and L. Li, “Microgrid Operation Improvement by Adaptive Virtual Impedance”, IET Renew. Power Gener. 13(2), 296‒307 (2018).
  12.  Z.A. Obaid, L.M. Cipcigan, L. Abrahim, and M.T. Muhsin, “Frequency control of future power systems: reviewing and evaluating challenges and new control methods”, J. Mod. Power Syst. Clean Energy 7(1), 9‒25 (2019).
  13.  R.M. Imran, S. Wang, and F.M.F. Flaih, “DQ-Voltage droop control and robust secondary restoration with eligibility to operate during communication failure in autonomous microgrid”, IEEE Access 7(12), 6353‒6361 (2019).
  14.  N.N. AbuBakar, M.Y. Hassan, M.F. Sulaima, M. Na’im, M. Nasir and A. Khamisd, “Microgrid and load shedding scheme during islanded mode: A review”, Renewable Sustainable Energy Rev., 71(6), 161‒169 (2017).
  15.  T.A. Jumani, M.W. Mustafa, M.M. Rasid, N.H. Mirjat, Z.H. Leghari, and M.S. Saeed, “Optimal Voltage and Frequency Control of an Islanded Microgrid Using Grasshopper Optimization Algorithm”, Energies 11(11), 1‒20 (2018).
  16.  Y. Han, P. Shen, and X. Zhao, “An enhanced power sharing scheme for voltage unbalance and harmonics compensation in an islanded AC microgrid”, IEEE Trans. Energy Convers. 31(3), 1037‒1050 (2016).
  17.  M. Kosari and S.H. Hosseinian, “Decentralized reactive power sharing and frequency restoration in islanded microgrid”, IEEE Trans. Power Syst. 32(4), 2901‒2912 (2017).
  18.  Y.A. Mohamed and E.F. El-Saadany, “Adaptive decentralized droop controller to preserve power sharing stability of paralleled inverters in distributed generation microgrids”, IEEE Trans. Power Electron. 23(6), 2806‒2816 (2008).
  19.  X. Hou, Y. Sun, H. Han, Z. Liu, W. Yuan, and M. Su, “A fully decentralized control of grid-connected cascaded inverters”, IEEE Trans. Power Deliv. 10(1), 315‒317 (2019).
  20.  L. Li, Y. Sun, Z. Liu, X. Hou, G. Shi, and M. Su, “A decentralized control with unique equilibrium point for cascaded-type microgrid”, IEEE Trans. Sustain. Energy 10(1), 324‒326 (2019).
  21.  F. Guo, C. Wen, and J. Mao, “Distributed secondary voltage and frequency restoration control of droop-con-trolled inverter-based microgrids”, IEEE Trans. Ind. Electron. 62(7), 4355‒4364 (2015).
  22.  S. Zuo, A. Davoudi, and Y. Song, “Distributed finite-time voltage and frequency restoration in islanded AC microgrids”, IEEE Trans. Ind. Electron. 63(10), 5988‒5997 (2016).
  23.  C. Dou, Z. Zhang, and D. Yu, “MAS-based hierarchical distributed coordinate control strategy of virtual power source voltage in low- voltage microgrid”, IEEE Access 5(1), 11381‒11390 (2017).
  24.  N.M. Dehkordi, N. Sadati, and M. Hamzeh, “Distributed robust finite-time secondary voltage and frequency control of islanded microgrids”, IEEE Trans. Power Syst., 32(5), 3648‒3659 (2017).
  25.  N.M. Dehkordi, N. Sadati, and M. Hamzeh, “Fully distributed cooperative secondary frequency and voltage control of islanded microgrids”, IEEE Trans. Energy Convers. 32(2), 675‒685 (2017).
  26.  D.O. Amoateng, M.A. Hosani, and M.S. Elmoursi, “Adaptive voltage and frequency control of islanded multi-microgrids”, IEEE Trans. Power Syst. 33(4), 4454‒4465 (2018).
  27.  Q. Shafiee, J.M. Guerrero, and J.C. Vasquez, “Distributed secondary control for islanded microgrids-a novel approach”, IEEE Trans. Power Electron. 29(2), 1018‒1031 (2014).
  28.  U. Sowmmiya and U. Govindarajan, “Control and power transfer operation of WRIG-based WECS in a hybrid AC/DC microgrid”, IET Renewable Power Gener. 12(3), 359‒373 (2018).
  29.  Z. Zhang, C. Dou, and D. Yu, “An event-triggered secondary control strategy with network delay in islanded microgrids”, IEEE Syst. J. 13(2), 1851‒1860 (2019).
  30.  J. He and Y. Li, “An enhanced microgrid load demand sharing strategy”, IEEE Trans. Power Electron. 27(9), 3984‒3995 (2012).
  31.  Y. Fan, G. Hu, and M. Egerstedt, “Distributed reactive power sharing control for microgrids with event-triggered communication”, IEEE Trans. Control Syst. Technol. 25(1), 118‒128 (2017).
  32.  X. Lu. J. Lai, and X. Yu, “Distributed coordination of islanded microgrid clusters using a two-layer intermittent communication network”, IEEE Trans. Ind. Inf. 14(9), 3956‒3969 (2018).
  33.  X. Wu, C. Shen, and R. Iravani, “A distributed, cooperative frequency and voltage control for microgrids”, IEEE Trans. Smart Grid, 9(4), 2764‒2776 (2018).
  34.  G. Lou, W. Gu, and L. Wang, “Decentralized secondary voltage and frequency control scheme for islanded microgrid based on adaptive state estimator”, IET Gener. Transm. Distrib., 11(15), 3683‒3693 (2017).
  35.  B. Wang, S. Liu, and Y. Zhang, “Reactive power sharing control based on voltage compensation strategy in microgrid”, 36th Chinese Control Conference (2017).
  36.  H.E.Z. Farag, S. Saxena, and A. Asif, “A robust dynamic state estimation for droop controlled islanded microgrids”, Electr. Power Syst. Res. 140(11), 445‒455 (2016).
  37.  K. Sabzevari, S. Karimi, F. Khosravi, and H. Abdi, “Modified droop control for improving adaptive virtual impedance strategy for parallel distributed generation units in islanded microgrids, Int. Trans. Electr. Energy Syst., 29(1), e2689 (2019).
  38.  C. Dou, Z. Zhang, D. Yue, and M. Song, “Improved droop control based on virtual impedance and virtual power source in low-voltage microgrid”, IET Gener. Transm. Distrib. 11(4), 1046‒1054 (2017).
  39.  P.K. Ray, N. Kishor, and S.R. Mohanty, “Islanding and power quality disturbance detection in grid-connected hybrid power system using wavelet and S-transform”, IEEE Trans. Smart Grid, 3(3), 1082‒1094 (2012).
Go to article

Authors and Affiliations

Amir Khanjanzadeh
1
Soodabeh Soleymani
1
Babak Mozafari
1

  1. Electrical and Computer Engineering Department, Science and Research Branch, Islamic Azad University, Tehran, Iran
Download PDF Download RIS Download Bibtex

Abstract

The paper raises the issue of optimizing the control of the rural low voltage microgrids. Microgrids can operate in a synchronous mode with grids of distribution system operators and in an island mode. We can distinguish two control strategies in microgrids: one approach based on centralized control logic, which is usually used, and another on decentralized control logic. In this paper we decided to present the approach based on the distributed control, combining the efforts of the distributed cooperative control and modified Monte Carlo optimization method. Special attention has been paid to the impact of the order of processing particular devices’ groups on results of optimization calculations. Moreover, different scenarios of behavior of the microgrid control system with respect to the communication loss have been also presented. The influence of the issue of continuity of communication between particular devices’ groups on the possibility of carrying out the optimization process has been investigated. Additionally, characteristics of power loads and generation of electricity from small renewable energy sources appearing in rural areas have been described and the sensitivity of the optimization algorithm to the changes of demanded power values and changes of values of power generated by renewable energy sources has been studied. We analyzed different objective functions which can be used as an optimization goal both in synchronous and island operation modes of microgrid. We decided to intensively test our approach on a sample rural LV microgrid, which is typical in the countryside. The observed results of the tests have been presented and analyzed in detail. Generally, results achieved with the use of proposed distributed control are the same as with the use of centralized control. We think that the approach based on distributed control is promising for practical applications, because of its advantages.

Go to article

Authors and Affiliations

M. Parol
P. Kapler
J. Marzecki
R. Parol
M. Połecki
Ł. Rokicki
Download PDF Download RIS Download Bibtex

Abstract

In this paper, a control strategy for real-time operation of a master-slave controlled microgrid is developed. The basic idea of this control strategy is to schedule all dispatchable energy sources available into a microgrid to minimize its operational costs. Control actions are centrally evaluated by solving a two-stage optimization problem formulated to take place on two different time-scales: in the day-ahead and in the real-time. The first one provides a 24-hour plan in advance. It mainly draws up the active power levels that Distributed Energy Resources (DERs) should provide for each quarter hour of the next day by taking into account energy prices of the day-ahead energy market, the forecasted energy production of non-dispatchable renewables and loads. The real-time optimization problem updates the active power set-points of DERs in order to minimize as much as possible the real-time deviations between the actual power exchanged with the utility grid and its scheduled value. The effectiveness of the proposed methodology has been experimentally tested on an actual microgrid.

Go to article

Authors and Affiliations

A. Cagnano
E. De Tuglie
F. Marcone
G. Porro
D.D. Rasolomampionona
Download PDF Download RIS Download Bibtex

Abstract

Solar energy is widely available in nature and electricity can be easily extracted using solar PV cells. A fuel cell being reliable and environment friendly becomes a good choice for the backup so as to compensate for continuously varying solar irradiation. This paper presents simple control schemes for power management of the DC microgrid consisting of PV modules and fuel cell as energy sources and a hydrogen electrolyzer system for storing the excess power generated. The supercapacitor bank is used as a short term energy storage device for providing the energy buffer whenever sudden fluctuations occur in the input power and the load demand. A new power control strategy is developed for a hydrogen storage system. The performance of the system is assessed with and without the supercapacitor bank and the results are compared. A comparative study of the voltage regulation of the microgrid is presented with the controller of the supercapacitor bank, realized using a traditional PI controller and an intelligent fuzzy logic controller.

Go to article

Authors and Affiliations

Pramod Bhat Nempu
N. Sabhahit Jayalakshmi
Download PDF Download RIS Download Bibtex

Abstract

The abundant use of solar energy in Indonesia has the potential to become electrical energy in a microgrid system. Currently the use of renewable energy sources (RESs) in Indonesia is increasing in line with the reduction of fossil fuels. This paper proposes a new microgrid DC configuration and designs a centralized control strategy to manage the power flow from renewable energy sources and the load side. The proposed design uses three PV arrays (300 Wp PV module) with a multi-battery storage system (MBSS), storage (200 Ah battery). Centralized control in the study used an outseal programmable logic controller (PLC). In this study, the load on the microgrid is twenty housing, so that the use of electrical energy for one day is 146.360 Wh. It is estimated that in one month it takes 4.390.800 Wh of electrical energy. The new DC microgrid configuration uses a hybrid configuration, namely the DC coupling and AC coupling configurations.The results of the study show that the DC microgrid hybrid configuration with centralized control is able to alternately regulate the energy flow from the PV array and MBSS. The proposed system has an efficiency of 98% higher than the previous DC microgrid control strategy and configuration models.
Go to article

Authors and Affiliations

Adhi Kusmantoro
1
Irna Farikhah
2

  1. Department of Electrical Engineering, Universitas PGRI Semarang Jl. Sidodadi Timur No. 24 – Dr. Cipto, Semarang 50125, Indonesia
  2. Department of Mechanical Engineering, Universitas PGRI Semarang, Jl. Sidodadi Timur No. 24 – Dr. Cipto, Semarang 50125, Indonesia
Download PDF Download RIS Download Bibtex

Abstract

In this study, the inverter in a microgrid was adjusted by the particle swarm optimization (PSO) based coordinated control strategy to ensure the stability of the isolated island operation. The simulation results showed that the voltage at the inverter port reduced instantaneously, and the voltage unbalance degree of its port and the port of point of common coupling (PCC) exceeded the normal standard when the microgrid entered the isolated island mode. After using the coordinated control strategy, the voltage rapidly recovered, and the voltage unbalance degree rapidly reduced to the normal level. The coordinated control strategy is better than the normal control strategy.
Go to article

Bibliography

[1] Mohamed A., Lamhamdi T., Moussaoui H.E., Markhi H.E., Intelligent energy management system of a smart microgrid using multiagent systems, Archives of Electrical Engineering, vol. 69, no. 1, pp. 23–38 (2020).
[2] Selakov A., Bekut D., Sari A.T., A novel agent-based microgrid optimal control for grid-connected, planned island and emergency island operations, International Transactions on Electrical Energy Systems, vol. 26, no. 9, pp. 1999–2022 (2016).
[3] Obara S., Sato K., Utsugi Y., Study on the operation optimization of an isolated island microgrid with renewable energy layout planning, Energy, vol. 161, no. OCT.15, pp. 1211–1225 (2018).
[4] Zhang T.F., Li X.X., A Control Strategy for Smooth Switching Between Island Operation Mode and Grid-Connection Operation Mode of Microgrid Containing Photovoltaic Generations, Power System Technology, vol. 39, pp. 904–910 (2015).
[5] Liang H., Dong Y., Huang Y., Zheng C., Li P., Modeling of Multiple Master–Slave Control under Island Microgrid and Stability Analysis Based on Control Parameter Configuration, Energies, vol. 11, no. 9 (2018).
[6] Zhang L., Chen K., Lyu L., Cai G., Research on the Operation Control Strategy of a Low-Voltage Direct Current Microgrid Based on a Disturbance Observer and Neural Network Adaptive Control Algorithm, Energies, vol. 12, no. 6 (2019).
[7] MaY.,Yang P., Guo H.,WangY., Dynamic Economic Dispatch and Control of a Stand-alone Microgrid in DongAo Island, Journal of Electrical Engineering & Technology, vol. 10, no. 4, pp. 1433–1441 (2015).
[8] Worku M., Hassan M., Abido M., Real Time Energy Management and Control of Renewable Energy based Microgrid in Grid Connected and Island Modes, Energies, vol. 12, no. 2 (2019).
[9] Xu X., Zhou X., Control Strategy for Smooth Transfer Between Grid-connected and Island Operation for Micro Grid, High Voltage Engineering, vol. 44, no. 8, pp. 2754–2760 (2018).
[10] Roque J.A.M., Gonzalez R.O., Rivas J.J.R., Castillo O.C., Caporal R.M., Design of aNew Controller for an Inverter Operation in Transitional Regime Within a Microgrid, IEEE Latin America Transactions, vol. 14, no. 12, pp. 4724–4732 (2017).
[11] Ma Y., Yang P., Zhao Z., Wang Y., Optimal Economic Operation of Islanded Microgrid by Using a Modified PSO Algorithm, Mathematical Problems in Engineering, vol. 2015, pp. 1–10 (2015).
[12] Li P., Xu D., Zhou Z., Lee W., Zhao B., Stochastic Optimal Operation of Microgrid Based on Chaotic Binary Particle SwarmOptimization, IEEE Transactions on Smart Grid, vol. 7, no. 1, pp. 66–73 (2016).
[13] Tan Y., Cao Y., Li C., Li Y., Yu L., Zhang Z., Tang S., Microgrid stochastic economic load dispatch based on two-point estimate method and improved particle swarm optimization, International Transactions on Electrical Energy Systems, vol. 25, no. 10, pp. 2144–2164 (2015).
[14] Radosavljevic J., Jevtic M., Klimenta D., Energy and operation management of a microgrid using particle swarm optimization, Engineering Optimization, vol. 48, no. 5, pp. 1–20 (2015).
[15] Maulik A., Das D., Optimal operation of microgrid using four different optimization techniques, Sustainable Energy Technologies and Assessments, vol. 21, pp. 100–120 (2017), DOI: 10.1016/j.seta.2017.04.005.
Go to article

Authors and Affiliations

Pan Wu
1
ORCID: ORCID
Xiaowei Xu
2

  1. Power Supply Co., Ltd.Luqiao District, Taizhou, Zhejiang Province, China
  2. Power Supply Co., Ltd.Tonglu, Zhejiang Province, China
Download PDF Download RIS Download Bibtex

Abstract

Water scarcity is a phenomenon that is occurring more and more frequently in larger areas of Europe. As a result of drought, there are significant drops in yields. As demand for food continues to rise, it is becoming necessary to bring about a substantial increase in crop production. The best solution to water scarcity appears to be irrigation for crops that are particularly sensitive to drought. Today, many technical solutions are used to supply and distribute water to crops. The optimal solution is drip irrigation, which makes it possible to deliver water directly to the plant root system to save melting freshwater resources. In the article special attention was paid to methods of supplying electricity to power irrigation pumps. The analysis was made for areas with a significant distance between the agricultural land and the urbanised area (which has water and electricity). The authors have selected the parameters of an off-grid photovoltaic mini-hydropower plant with energy storage (with a power of 1.36 kW). An analysis was made of the profitability of such an investment and a comparison with other types of power supply. Based on the performed calculations, a prototype power supply system equipped with photovoltaic panels was made to show the real performance of the proposed system. The tests carried out showed that the irrigation pump will be powered most of the time with a voltage whose parameters will be very close to the nominal ones.
Go to article

Authors and Affiliations

Zbigniew Skibko
1
ORCID: ORCID
Wacław Romaniuk
2
ORCID: ORCID
Andrzej Borusiewicz
3
ORCID: ORCID
Stanisław Derehajło
3
ORCID: ORCID

  1. Bialystok University of Technology, Faculty of Electrical Engineering, Wiejska 45 D, 15-351 Białystok, Poland
  2. Institute of Technology and Life Sciences – National Research Insitute, Falenty, Poland
  3. The Higher School of Agribusiness in Łomża, Poland
Download PDF Download RIS Download Bibtex

Abstract

In microgrid distribution generation (DG) sources are integrated parallelly for the economic and efficient operation of a power system. This integration of DG sources may cause many challenges in a microgrid. The islanding condition is termed a condition in which the DG sources in the microgrid continue to power the load even when the grid is cut off. This islanding situation must be identified as soon as possible to avoid the collapse of the microgrid. This work presents the hybrid islanding detection technique. This technique consists of both active and parametric estimation methods such as slip mode shift frequency (SMS) and exact signal parametric rotational invariance technique (ESPRIT), respectively. This technique will easily distinguish between islanding and non-islanding events even under very low power perturbations. The proposed method also has no power quality impact. The proposed method is tested with UL741 standard test conditions.
Go to article

Authors and Affiliations

S. Jayanthi
1
S. Arockia Edwin Xavier
2
ORCID: ORCID
P.S. Manoharan
2
ORCID: ORCID

  1. Sapthagiri College of Engineering, Periyanahali, Dharmapuri, India
  2. Thiagarajar College of Engineering, Madurai, India
Download PDF Download RIS Download Bibtex

Abstract

The paper presents a honey badger algorithm (HB) based on a modified backwardforward sweep power flow method to determine the optimal placement of droop-controlled dispatchable distributed generations (DDG) corresponding to their sizes in an autonomous microgrid (AMG). The objectives are to minimise active power loss while considering the reduction of reactive power loss and total bus voltage deviation, and the maximisation of the voltage stability index. The proposed HB algorithm has been tested on a modified IEEE 33-bus AMG under four scenarios of the load profile at 40%, 60%, 80%, and 100% of the rated load. The analysis of the results indicates that Scenario 4, where the HB algorithm is used to optimise droop gains, the positioning of DDGs, and their reference voltage magnitudes within a permissible range, is more effective in mitigating transmission line losses than the other scenarios. Specifically, the active and reactive power losses in Scenario 4 with the HB algorithm are only 0.184% and 0.271% of the total investigated load demands, respectively. Compared to the base scenario (rated load), Scenario 4 using the HB algorithm also reduces active and reactive power losses by 41.86% and 31.54%, respectively. Furthermore, the proposed HB algorithm outperforms the differential evolution algorithm when comparing power losses for scenarios at the total investigated load and the rated load. The results obtained demonstrate that the proposed algorithm is effective in reducing power losses for the problem of optimal placement and size of DDGs in the AMG.
Go to article

Authors and Affiliations

Tham X. Nguyen
1
ORCID: ORCID
Robert Lis
1
ORCID: ORCID

  1. Faculty of Electrical Engineering, Wrocław University of Science and Technology, Wybrzeze Wyspianskiego 27, 50-370 Wrocław, Poland
Download PDF Download RIS Download Bibtex

Abstract

The smart grid concept is predicated upon the pervasive use of advanced digital communication, information techniques, and artificial intelligence for the current power system, to be more characteristics of the real-time monitoring and controlling of the supply/demand. Microgrids are modern types of power systems used for distributed energy resource (DER) integration. However, the microgrid energy management, the control, and protection of microgrid components (energy sources, loads, and local storage units) is an important challenge. In this paper, the distributed energy management algorithm and control strategy of a smart microgrid is proposed using an intelligent multi-agent system (MAS) approach to achieve multiple objectives in real-time. The MAS proposed is developed with co-simulation tools, which the microgrid model, simulated using MATLAB/Simulink, and the MAS algorithm implemented in JADE through a middleware MACSimJX. The main study is to develop a new approach, able to communicate a multi-task environment such as MAS inside the S-function block of Simulink, to achieve the optimal energy management objectives.

Go to article

Authors and Affiliations

Mohamed Azeroual
Tijani Lamhamdi
Hassan El Moussaoui
Hassane El Markhi
Download PDF Download RIS Download Bibtex

Abstract

In recent years, due to the increasing number of renewable energy sources, which are characterised by the stochastic nature of the generated power, interest in energy storage has increased. Commercial installations use simple deterministic methods with low economic efficiency. Hence, there is a need for intelligent algorithms that combine technical and economic aspects. Methods based on computational intelligence (CI) could be a solution. The paper presents an algorithm for optimising power flow in microgrids by using computational intelligence methods. This approach ensures technical and economic efficiency by combining multiple aspects in a single objective function with minimal numerical complexity. It is scalable to any industrial or residential microgrid system. The method uses load and generation forecasts at any time horizon and resolution and the actual specifications of the energy storage systems, ensuring that technological constraints are maintained. The paper presents selected calculation results for a typical residential microgrid supplied with a photovoltaic system. The results of the proposed algorithm are compared with the outcomes provided by a deterministic management system. The computational intelligence method allows the objective function to be adjusted to find the optimal balance of economic and technical effects. Initially, the authors tested the invented algorithm for technical effects, minimising the power exchanged with the distribution system. The application of the algorithm resulted in financial losses, €12.78 for the deterministic algorithm and €8.68 for the algorithm using computational intelligence. Thus, in the next step, a control favouring economic goals was checked using the CI algorithm. The case where charging the storage system from the grid was disabled resulted in a financial benefit of €10.02, whereas when the storage system was allowed to charge from the grid, €437.69. Despite the financial benefits, the application of the algorithm resulted in up to 1560 discharge cycles. Thus, a new unconventional case was considered in which technical and economic objectives were combined, leading to an optimum benefit of €255.17 with 560 discharge cycles per year. Further research of the algorithm will focus on the development of a fitness function coupled to the power system model.
Go to article

Authors and Affiliations

Dominika Kaczorowska
1
ORCID: ORCID
Jacek Rezmer
1
ORCID: ORCID
Przemysław Janik
1
ORCID: ORCID
Tomasz Sikorski
1
ORCID: ORCID

  1. Wroclaw University of Science and Technology, Wybrzeze Wyspianskiego 27, 50-370 Wroclaw, Poland
Download PDF Download RIS Download Bibtex

Abstract

Three synchronous machine models representing three precision levels (complete, reduced and static), implemented in a virtual synchronous generator (VSG)-based industrial inverter, are compared and discussed to propose a set of tests for a possible standardization of VSG-based inverters and to ensure their “grid-friendly” operation in the context of isolated microgrids. The models and their implementation in the microcontroller of an industrial inverter (with the local control) are discussed, including the usability of the implementation with large-scale developments constraints in mind. The comparison is conducted based on existing standards (for synchronous machines and diesel generators) in order to determine their needed evolution, to define the requirements for future grid-friendly inverter-based generators, notably implementing a VSG solution.

Go to article

Authors and Affiliations

V. Moulichon
V. Debusschere
L. Garbuio
M.A. Rahmani
M. Alamir
N. Hadjsaid
Download PDF Download RIS Download Bibtex

Abstract

This paper highlights the storage charging and discharging issue. The study objective is to manage the energy inputs and outputs of the principal grid at the same time in order to maximize profit while decreasing costs, as well as to ensure the availability of energy according to demand and the decisions to either save or search for energy. A fuzzy logic control model is applied in MATLAB Simulink to deal with the system’s uncertainties in scheduling the storage battery technology and the charging- discharging. The results proved that the fuzzy logic model has the potential to efficiently lower fluctuations and prolong the lifecycle.
Go to article

Authors and Affiliations

Meryem Meliani
1
ORCID: ORCID
Abdellah El Barkany
1
Ikram El Abbassi
2
Rafik Absi
2
Faouaz Jeffali
3

  1. Mechanical Engineering Laboratory, Faculty of Science and Technology, Sidi Mohammed Ben Abdellah University, Morocco
  2. ECAM, EPMI, France
  3. Laboratory of Materials, Waves, Energy and Environment, Mohammed First University, Morocco

This page uses 'cookies'. Learn more