Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 23
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

In this investigation, Copper Matrix Surface Composites (CMSCs) were reinforced with various ceramic particles like Aluminum Nitrate (AlN), Titanium diboride (TiB2), and Rice Husk Ash (RHA) are used to increase the metallurgical and mechanical properties by Friction Stir Processing (FSP). The Design of the Experiment (DOE) Taguchi L9 orthogonal array method was used. The process parameters considered were groove width and various types of reinforcement particles. The fabrication of CMSCs was achieved by using optimized process parameters, such as the tool transverse speed of 40 mm/min, rotational tool speed of 1000 rpm, and an axial load of 10 kN with one pass. The influence of FSP process parameters on CMSCs in the stir zone is observed through Optical Microscope (OM), Field Emission Scanning Electron Microscope (FESEM), and Transmission Electron Microscope (TEM). Mechanical properties such as microhardness and wear rate are studied and compared. It reveals that good interfacial bonding was produced between ceramic particles in CMSCs. TiB2 reinforced with copper matrix surface composites enhance microhardness and had a lesser wear rate.
Go to article

Authors and Affiliations

S. Saravanakumar
1
ORCID: ORCID
S. Gopalakrishnan
2
ORCID: ORCID
K. Kalaiselvan
3
ORCID: ORCID

  1. Department of Mechanical Engineering, M. Kumarasamy College of Engineering, Karur, Tamilnadu, India
  2. Department of Mechanical Engineering, KS Rangasamy College of Technology, Tiruchengode, Tamilnadu, India
  3. Department of Mechanical Engineering, Dr. NGP Institute of Technology, Coimbatore, Tamilnadu, India
Download PDF Download RIS Download Bibtex

Abstract

The article provides results of the microstructure examinations and mechanical properties (hardness and microhardness tests) of the welded joint T91 steel taken from the live steam pipeline. Examined joint has been exploited for about 45 000 hours in a temperature of 535oC and the steam pressure equals to 13.5 MPa. Examined joint was made as a double bead by the additional materials with a different chemical composition. It was proved that the joint was characterized by a differential microstructure on the cross-section of the weld. Moreover, decarburized zone in the lower alloyed material and carbides zone in the higher alloyed material were revealed in the weld line and on the boundary penetration of beads. Furthermore, it was shown that the main mechanism of a joint degradation is a privileged precipitation of carbides on the grain boundaries, and an increase of their size.

Go to article

Authors and Affiliations

G. Golański
A. Merda
K. Klimaszewska
P. Wieczorek
Download PDF Download RIS Download Bibtex

Abstract

This study aimed to develop Fe/Al multilayered metallic/intermetallic composites produced by hot pressing under an air atmosphere. Analyses were carried out on the composite plates made up of alternatively situated sheets of AA1050 aluminum alloy and DN04 low carbon steel, which were annealed at 903 K for 2, 5, and 10 h. Annealing was performed to obtain reaction layers of distinct thickness. The samples were examined using X-Ray diffraction and scanning and transmission electron microscope equipped with an energy-dispersive X-Ray spectrometer. To correlate the structural changes with mechanical properties, microhardness measurements in near-the-interface layers were performed. All the reaction layers grew with parabolic kinetics with η-Al5Fe2 intermetallic phase as the dominant component. After annealing for 5 and 10 hours, a thin sublayer of θ-Al13Fe4 phase was also detected.
Go to article

Authors and Affiliations

W. Kowalski
1
ORCID: ORCID
H. Paul
1
ORCID: ORCID
I. Mania
1
ORCID: ORCID
P. Petrzak
1
ORCID: ORCID
P. Czaja
1
ORCID: ORCID
R. Chulist
1
ORCID: ORCID
A. Góral
1
ORCID: ORCID
M. Szlezynger
1
ORCID: ORCID

  1. Institute of Metallurgy and Materials Science, Polish Academy of Sciences, 25 Reymonta Str., 30-059 Krakow, Poland
Download PDF Download RIS Download Bibtex

Abstract

The present research investigates the nitriding kinetics of the near-beta-titanium alloy of Ti-Al-Nb-Fe-Zr-Mo-V system at 750, 800, and 850°C in gaseous nitrogen at 10 5 Pa for 2, 4, and 8 h. The parabolic coefficient kp of the layer’s growth rate and the nitriding activation energy E are set as the kinetic parameters of the nitrided layer’s growth. The activation energy for the formation of a nitride layer is ~108 kJ/mol. The authors discuss the morphology of the nitride layers as well as their roughness and surface hardness. The study determines the effective diffusion coefficient for the growth of diffusion layers in the temperature range of 750...850°C: Def = D0 × exp (– E/RT), where D0 = 0.0177 m 2/s; E = 215.7 kJ/mol. The friction coefficient of the disk from near-beta-titanium alloy with a bronze block is lowered by significantly more than 10 times after gas nitriding, and the temperature in the friction zone is reduced by 2.5 times.
Go to article

Authors and Affiliations

A.G. Luk’yanenko
1
ORCID: ORCID
I.M. Pohrelyuk
1
ORCID: ORCID
V.M. Fedirko
1
ORCID: ORCID
A.G. Molyar
2
V.S. Trush
1
ORCID: ORCID
T.M. Kravchyshyn
1

  1. G.V. Karpenko Physico-Mechanics Institute of the NAS of Ukraine, Department of Material Science Bases of Surface Engineering, 5, Naukova Str., 79060 Lviv, Ukraine
  2. G.V. Kurdyumov Institute for Metal Physics of the NAS of Ukraine, Department of Physics of Strength and Ductility of Inhomogeneous Alloys,36 Academician Vernadsky Boulevard, 03142 Kyiv, Ukraine
Download PDF Download RIS Download Bibtex

Abstract

In this paper, aluminium alloy of grade ADC-12 was considered as a base metal and chromium carbide (Cr3C2) particles were reinforced through friction stir process. A detailed analysis of mechanical property and metallurgical characterization studies were performed to evaluate the surface composite. Remarkable changes were observed in the developed composite due to the mechanical force produced by the stir tool with an increase in hardness. The metallurgical investigation infers that the presence of silica in ADC-12 alloys has undergone mechanical fracture and long needle structure changed to reduced size. On the other hand, at higher tool rotational speed, the uniform distribution of hard particles was confirmed through SEM micrographs. Thus the modified surface composite has produced good mechanical property with high metallurgical qualities.

Go to article

Authors and Affiliations

J. Satheeshkumar
M. Jayaraman
G. Suganya Priyadharshini
ORCID: ORCID
C.S. Sathya Mukesh
Download PDF Download RIS Download Bibtex

Abstract

Crystal structure and phase composition of stainless steel substrates (AISI 304 type) was studied and it was found that they adopted the cubic symmetry. The calculated elementary cell parameter for the mayor Fe-Ni phase (weight fraction 99%) was a = 3.593 Å, whereas the mean grain size was <D> = 2932 Å. Morphology of the stainless steel substrate surface was studied with profilometry. Mechanical properties of the stainless steel substrates and stainless steel substrates coated with ceramic layer of barium strontium titanate were studied with microhardness tester. For measurements performed according to the Vickers method the average microhardness was found HV = 189 or HV = 186 for the “in-line” and “mapping” measurement pattern, respectively. The sol-gel method was used to coat the surface of the stainless steel substrate with a thin ceramic layer of the chemical composition Ba0.6Sr0.4TiO3. It was found that the stainless steel substrate covered with sol-gel deposited ceramic coating exhibited the average hardness within the range HV = 217 up to HV = 235 for loading force F = 98 mN and F = 0.98 N, respectively. The Knopp method was also used and it was found that the stainless steel substrate with Ba0.6Sr0.4TiO3 coating exhibited hardness HK = 386.

Go to article

Authors and Affiliations

D. Czekaj
A. Lisińska-Czekaj
K. Krzysztofowicz
Download PDF Download RIS Download Bibtex

Abstract

In the presented work, two multicomponent Cr 25Z 25Co 20Mo 15Si 10Y 5 and Cr 25Co 25Zr 20Mo 15Si 10Y 5 alloys were produced from bulk chemical elements using the vacuum arc melting technique. X-ray diffraction phase analysis was used to determine the phase composition of the obtained materials. Microstructure analysis included scanning electron microscopy and energy dispersive X-ray spectroscopy techniques. The studies revealed the presence of multi-phase structures in both alloys. Elemental distribution maps confirmed the presence of all six alloying elements in the microstructure. The segregation of chemical elements was also observed. Microhardness measurement revealed that both alloys exhibited microhardness from 832(27) to 933(22) HV1.
Go to article

Authors and Affiliations

K. Glowka
1
ORCID: ORCID
M. Zubko
1
ORCID: ORCID
K. Piotrowski
1
ORCID: ORCID
P. Świec
1
ORCID: ORCID
K. Prusik
1
ORCID: ORCID
R. Albrecht
1
ORCID: ORCID
D. Stróż
1
ORCID: ORCID

  1. University of Silesia in Katowice, Institute of Materials Engeenering, Chorzów, Poland
Download PDF Download RIS Download Bibtex

Abstract

The modified surface layers of Mg enriched with Al and Si were fabricated by thermochemical treatment. The substrate material in contact with an Al + 20 wt.% Si powder mixture was heated to 445ºC for 40 or 60 min. The microstructure of the layers was examined by OM and SEM. The chemical composition of the layer and the distribution of elements were determined by energy dispersive X-ray spectroscopy (EDS). The experimental results show that the thickness of the layer is dependent on the heating time. A much thicker layer (1 mm) was obtained when the heating time was 60 min than when it was 40 min (600 μm). Both layers had a non-homogeneous structure. In the area closest to the Mg substrate, a thin zone of a solid solution of Al in Mg was detected. It was followed by a eutectic with Mg17Al12and a solid solution of Al in Mg. The next zone was a eutectic with agglomerates of Mg2Si phase particles; this three-phase structure was the thickest. Finally, the area closest to the surface was characterized by dendrites of the Mg17Al12phase. The microhardness of the modified layer increased to 121-236 HV as compared with 33-35 HV reported for the Mg substrate.

Go to article

Authors and Affiliations

R. Mola
E. Stępień
M. Cieślik
Download PDF Download RIS Download Bibtex

Abstract

In this work, the change of the structure and microhardness of Ti6Al4V titanium alloy after remelting and remelting with SiC alloing by electric arc welding (GTAW method) was studied. The current intensity equal 100 A and fixed scan speed rate equal 0,2 m/min has been used to remelting surface of the alloy. Change of structure were investigated by optical and scanning electron microscopy. Microhardness test showed, that the remelting of the surface does not change the hardness of the alloy. Treated by GTAW SiC alloying leads to the formation of hard (570 HV0, 1) surface layer with a thickness of 2 mm. The resulting surface layer is characterized by diverse morphology alloyed zone. The fracture of alloy after conventional heat treatment, similarly to fracture after remelting with GTAW is characterized by extremely fine dimples of plastic deformation. In the alloyed specimens the intergranular and crystalline fracture was identified.

Go to article

Authors and Affiliations

W. Bochnowski
Download PDF Download RIS Download Bibtex

Abstract

In the present work, rapidly solidified Al-10Ni-XSc (X = 0, 1 and 2) alloys were fabricated by melt spinning under Ar atmosphere. The Effects of Sc on the microstructural and thermal properties and microhardness values were investigated by scanning electron microscopy (SEM), X-ray diffractometer (XRD) and a Vickers microhardness tester. Experimental results revealed that the addition of 2 wt. % Sc to melt-spun Al-10Ni alloys changed their brittle nature and hindered formation of cracks. The addition of Sc to melt-spun Al-10Ni alloys also changed the morphology of Al3Ni intermetallics from an acicular/needle – like to a rounded particle-like structure and led to reduction in their size. Formation of the metastable Al9Ni2 phase was observed due to the higher constitutional undercooling caused by Sc addition. A considerable improvement in microhardness value (from 95. 9 to 230. 1 HV) was observed with the addition of Sc.
Go to article

Authors and Affiliations

Fatih Kilicaslan M.
E. Karakose
Download PDF Download RIS Download Bibtex

Abstract

In this study, silicon carbide (SiC) reinforced lead-free solder (SAC305) was prepared by the powder metallurgy method. In this method SAC305 powder and SiC powder were milled, compressed and sintered to prepare composite solder. The composite solders were characterized by optical and scanning electron microscopy for the microstructural investigation and mechanical test. Addition of 1.5 wt. % and 2 wt. % ceramic reinforcement to the composite increased compressive strengths and microhardness up to 38% and 68% compared to those of the monolithic sample. In addition, the ceramic particles caused an up to 55% decrease in the wetting angle between the substrate and the composite solder and porosity was always increased with increase of SiC particles.

Go to article

Authors and Affiliations

Manoj Kumar Pal
G. Gergely
D. Koncz-Horvath
Z. Gacsi
Download PDF Download RIS Download Bibtex

Abstract

The effects of different types of balls on spark plasma sintering (SPS) characteristics of high energy ball milled Ti-48wt% Al-4wt% Nd powders were investigated. After ball milling with STS balls and zirconia balls at 800 rpm for 3 h in argon atmosphere, both powders showed shape factors of about 0.8, but their average powder sizes differed respectively at approximately 11 µm and 5 µm. From XRD results, only the peaks of pure Ti, Al and Nd were detected in both powders. The obtained Ti-Al-Nd powders were consolidated by SPS technique at 1373 K for 15 min under a pressure of 50 MPa in vacuum, resulting in high density over 99%. EDS and XRD analyses indicated the formation of binary phases such as TiAl3, TiAl, Ti3Al5, and NdAl3 after SPS in both cases of STS and zirconia balls, while the ternary Ti-Al-Nd phase was detected only in the case of zirconia balls. The size of second phases was slightly smaller in the case of zirconia balls. The microhardness of the sample was 790 Hv with zirconia balls and 540 Hv with STS balls.
Go to article

Authors and Affiliations

Hyunseung Lee
1
ORCID: ORCID
Hoseong Rhee
1
ORCID: ORCID
Sangsoo Lee
2
ORCID: ORCID
Si Young Chang
1
ORCID: ORCID

  1. Korea Aerospace University, Department of Materials Science and Engineering, Goyang, Korea
  2. Korea Aerospace University, Advanced Materials Research Institute, Goyang, Korea
Download PDF Download RIS Download Bibtex

Abstract

The paper presents the research data on structure, phase composition, defect substructure state, and microhardness of surface layers in the piston alloy Al-10wt%Si-2wt%Cu irradiated by an electron beam with various energy densities and pulse times. An important finding to emerge from the study is that the processing by an electron beam with an energy density of 10 J/cm2 brings about slight surface melting, whereas a weak thermal impact of an electron beam hardly changes the phase composition. Once an energy density of an electron beam is set 30 J/cm2, intermetallic compounds dissolve and numerous micropores arise. Irradiating by an electron beam with an energy density of 50 J/cm2, randomly located microcracks are detected on the treated surface with no regard to a pulse time. A structure of high-speed cellular crystallization with cells from 500 to 600 nm forms in the surface layer. A thickness of the modified layer is related to a beam energy density. As a beam energy density goes up, a thickness of a high-speed cellular crystallization layer increases. Atoms of Si, Cu, Ni, as well as a small quantity of Fe and Mg are detected in the surface, in thin layers surrounding crystallization cells. In a layer 60-80 μm below the irradiated surface, in material between high-speed crystallization cells, there are Si atoms and an insignificant number of Cu atoms. An analysis of a deeper material part has shown a structure similar to the as cast alloy. A drop of microhardness – if compared with the as cast material – is reported at an energy density of 10 J/cm2 because an energy amount supplied by an electron beam to the alloy surface is insufficient for melting of the material and dissolution of the intermetallic phase. A raise of a beam energy density up to 20-50 J/cm2 causes a max increase of microhardness up to 1.13 GPa for 40 J/cm2, 50 s, and up to 1.16 GPa for 40 J/cm2, 200 s.

Go to article

Authors and Affiliations

D. Zaguliaev
S. Konovalov
Y. Ivanov
A. Abaturova
A. Leonov
Download PDF Download RIS Download Bibtex

Abstract

Titanium and its alloys have significant uses in the biomedical, chemical, and aerospace industries. In this article, the current and gas flow rates were varied using Taguchi’s experiment design. The mechanical properties of the welded joint made using tungsten inert gas (TIG) welding and Ti6Al4V ELI as filler metal was characterized using the microstructure, microhardness, and tensile strength. The joint was classified into three regions, namely, fusion zone (FZ), heat affected zone (HAZ), and base metal (BM). Results show martensitic microstructure within the fusion zone (FZ) and the heat affected zone (HAZ), which resulted in an increased hardness within the fusion and heat affected zone.
Go to article

Authors and Affiliations

P.O. Omoniyi
1 2
ORCID: ORCID
R.M. Mahamood
3 2
ORCID: ORCID
A.A. Adeleke
4
ORCID: ORCID
P.P. Ikubanni
5
ORCID: ORCID
S.A. Akinlabi
6
ORCID: ORCID
E.T. Akinlabi
6
ORCID: ORCID

  1. University of Ilorin, Department of Mechanical Engineering, P. M. B. 1515, Ilorin, Nigeria
  2. University of Johannesburg, Department of Mechanical Engineering Science, P. O. Box 524, Johannesburg, South Africa
  3. University of Ilorin, Department of Materials and Metallurgical Engineering, P. M. B. 1515, Ilorin, Nigeria
  4. Nile University of Nigeria, Department of Mechanical Engineering, 900001, Nigeria
  5. Landmark University, Department of Mechanical Engineering, 252201, Nigeria
  6. University of Northumbria, Department of Mechanical and Construction Engineering, Newcastle, NE18ST, United Kingdom
Download PDF Download RIS Download Bibtex

Abstract

In this study, NiCrBSi-B4C (wt. %5, %10 ve %15 B4C) powder mixtures are coated on the stainless steel surface of AISI304 by tungsten inert gas (TIG) method. We use optic microscope and scanning electron microscope (SEM) for the coating layer analysis, energy dispersive spectrometry (EDS) for element distribution analysis and X-ray diffractogram (XRD) for the analysis of phase components. The measurements of hardness are determined by the microhardness tester. Based on the results obtained by the examination of microstructure and phases, it has been observed that while B and C elemets are more intense in the middle and upper parts of the coating layer, the parts close to the interface have a higher intensity of Ni and Fe. Moreover, there are phases such as Cr7C3, γ – Ni, CrFeB, Ni3B, CrB ve Fe2B are formed in the coating layer. The increasing ratio of B4C results in increasing on the measurement values of microhardness. The maximum hardness value (430,8 HV0.2) is obtained from the coating layer of S4 sample while the minimum value (366,9 HV0.2) is observed from the NiCrBSi coated sample.
Go to article

Bibliography

[1] R. Rachidi, B. El Kihel, F. Delaunois, Mater. Sci. Eng. B-Adv. 241, 13-21 (2019).
[2] H. Zhao, J. Li, Z. Zheng, A. Wang, D. Zeng, Y. Miao, Surf. Coat. Tech. 286, 303-312 (2016).
[3] C.K. Sahoo, M. Masanta, J. Mater Process Tech. 240, 126-137 (2017).
[4] Q. An, L. Huang, S. Jiang, X. Li, Y. Gao, Y. Liu, L. Geng, Vacuum. 145, 312-319 (2017).
[5] J.-S. Meng, G. Jin, X.-P. Shi, Appl. Surf. Sci. 431, 135-142 (2018).
[6] S . Buytoz, M. Ulutan, M.M. Yildirim, Appl. Surf. Sci. 252, 1313- 1323 (2005).
[7] J. Yin, D. Wang, L. Meng, L. Ke, Q. Hu, X. Zeng, Surf. Coat. Tech. 325, 120-126 (2017).
[8] J. Rodriguez, A. Martı́n, R. Fernández, J.E. Fernández, Wear. 255, 950-955 (2003).
[9] N.L. Parthasarathi, M. Duraiselvam, J. Alloy Compd. 505, 824- 831 (2010).
[10] S . Abdi, S. Lebaili, Phys. Procedia. 2, 1005-1014 (2009).
[11] M.J. Tobar, C. Álvarez, J.M. Amado, G. Rodríguez, A. Yáñez, Surf. Coat. Tech. 200, 6313-6317 (2006).
[12] N.Y. Sari, M. Yilmaz, Surf. Coat. Tech. 202, 3136-3141 (2008).
[13] E. Fernández, M. Cadenas, R. González, C. Navas, R. Fernández, J. de Damborenea, Wear 259, 870-875 (2005).
[14] S . Buytoz, GU J. Sci., Part C. 8, 51-63 (2020).
[15] X.-N. Wang, X.-M. Chen, Q. Sun, H.-S. Di, Mater. Lett. 206, 143-145 (2017).
[16] K.A. Habib, D.L. Cano, José Antonio Heredia, J.S. Mira, Surf. Coat. Tech. 358, 824-832 (2019).
[17] L.-Y. Chen, T. Xu, H. Wang, P. Sang, L.-C. Zhang, Surf Coat Tech. 358, 467-480(2019).
[18] Q.W. Meng, T.L. Geng, B.Y. Zhang, Surf. Coat. Tech. 200, 4923- 4928 (2006).
[19] Y.-X. Zhou, J. Zhang, Z.-G. Xing, H.-D.Wang, Z.-L. Lv, Surf. Coat. Tech. 361, 270-279 (2019).
[20] M. Kilic, A. Imak, I Kirik, JMEPEG. 30, 1411-1419 (2021).
[21] K. Kılıçay, S. Buytoz, M. Ulutan, Surf. Coat. Tech. 397, 125974 (2020).
[22] M.-J.Chao, X. Niu, B. Yuan, E.-J. Liang, D.-S. Wang, Surf. Coat. Tech. 201, 1102-1108 (2006).
[23] Y. Z., T. Yu, L. Chen, Y. Chen, C. Guan, J. Sun, Ceram. Int. 46, 25136-25148 (2020).
[24] L. Guo-lu, L. Ya-long, D. Tian-shun, F. Bin-Guo, Wang Hai-dou, Zheng Xiao-dong, Zhou Xiu-kai, Vacuum. 156, 440-448 (2018).
[25] S. Buytoz, M. Ulutan, M.M. Yıldırım, Eng. & Arch. Fac .Osmangazi University XVIII, 93-107 ( 2005).
[26] M. Kilic, European Journal of Technique (EJT) 10, 106-118 (2020).
[27] Guo-lu Li, Ya-long Li, Tian-shun Dong, Hai-dou Wang, Xiao-dong Zheng, Xiu-kai Zhou, Hindawi Advances in Materials Science and Engineering 2018, Article ID 8979678, 1-10 (2018).
[28] M. Storozhenko, O. Umanskyi, V. Krasovskyy, M. Antonov, O. Terentjev, J. Alloy Compd. 778, 15-22 (2019).
[29] A. Zabihi, R. Soltani, Surf. Coat. Tech. 349, 707-718 (2018).
Go to article

Authors and Affiliations

Musa Kiliҫ
1
ORCID: ORCID

  1. Batman University, Faculty of Technology, Department of Manufacturing Engineering, Batman, Turkey
Download PDF Download RIS Download Bibtex

Abstract

With the increase in wall thickness of the casting of iron-nickel-aluminium-bronze, by the reduction of the cooling rate the size of κII phase

precipitates increases. This process, in the case of complex aluminium bronzes with additions of Cr, Mo and W is increased. Crystallization

of big κII phase, during slow cooling of the casting, reduces the concentration of additives introduced to the bronze matrix and hardness.

Undertaken research to develop technology of thick-walled products (g> 6 mm) of complex aluminium bronzes. Particular attention

was paid to the metallurgy of granules. As a result, a large cooling speed of the alloy, and also high-speed solidification casting a light

weight of the granules allows: to avoid micro-and macrosegregation, decreasing the particle size, increase the dispersion of phases in

multiphase alloys. Depending on the size granules as possible is to provide finished products with a wall thickness greater than 6 mm by

infiltration of liquid alloy of granules (composites). Preliminary studies was conducted using drip method granulate of CuAl10Fe5Ni5

bronze melted in a INDUTHERM-VC 500 D Vacuum Pressure Casting Machine. This bronze is a starting alloy for the preparation of the

complex aluminium bronzes with additions of Cr, Mo, W and C or Si. Optimizations of granulation process was carried out. As the process

control parameters taken a casting temperature t (°C) and the path h (mm) of free-fall of the metal droplets in the surrounding atmosphere

before it is intensively cooled in a container of water. The granulate was subjected to a sieve analysis. For the objective function was

assume maximize of the product of Um*n, the percentage weight "Um" and the quantity of granules 'n' in the mesh fraction. The maximum

value of the ratio obtained for mesh fraction a sieve with a mesh aperture of 6.3 mm. In the intensively cooled granule of bronze was

identified microstructure composed of phases: β and fine bainite (α+β'+β'1) and a small quantity of small precipitates κII phase. Get high

microhardness bronze at the level of 323±27,9 HV0,1.

Go to article

Authors and Affiliations

B.P. Pisarek
Download PDF Download RIS Download Bibtex

Abstract

Cast high-manganese Hadfield steel is commonly used for machine components operating under dynamic load conditions. Their high fracture toughness and abrasive wear resistance is the result of an austenitic structure, which - while being ductile - at the same time tends to surface harden under the effect of cold work. Absence of dynamic loads (e.g. in the case of sand abrasion) causes rapid and premature wear of parts. In order to improve the abrasive wear resistance of cast high-manganese steel for operation under the conditions free from dynamic loads, primary titanium carbides are produced in this cast steel during melting process to obtain in castings, after melt solidification, the microstructure consisting of an austenitic matrix and primary carbides uniformly distributed therein. After heat treatment, the microhardness of the austenitic matrix of such cast steel is up to 580 μHV20 and the resulting carbides may reach even 4000 μHV20. The impact strength of this cast steel varies from 57 to 129 and it decreases with titanium content. Compared to common cast Hadfield steel, the abrasive wear resistance determined in Miller test is at least twice as high for the 0.4% Ti alloy and continues growing with titanium content.

Go to article

Authors and Affiliations

R. Zapała
G. Tęcza
Download PDF Download RIS Download Bibtex

Abstract

Widely used in the power and mining industry, cast Hadfield steel is resistant to wear, but only when operating under impact loads.

Components made from this alloy exposed to the effect of abrasion under load-free conditions are known to suffer rapid and premature

wear. To increase the abrasion resistance of cast high-manganese steel under the conditions where no dynamic loads are operating, primary

titanium carbides are formed in the process of cast steel melting, to obtain in the alloy after solidification and heat treatment, the

microstructure composed of very hard primary carbides uniformly distributed in the austenitic matrix of a hardness superior to the

hardness of common cast Hadfield steel. Hard titanium carbides ultimately improve the wear resistance of components operating under

shear conditions. The measured microhardness of the as-cast matrix in samples tested was observed to increase with the increasing content

of titanium and was 380 HV0.02 for the content of 0.4%, 410 HV0.02 for the content of 1.5% and 510 HV0.02 for the content of 2 and

2.5%. After solution heat treatment, the microhardness of the matrix was 460÷480 HV0.02 for melts T2, T3 and T6, and 580 HV0.02 for

melt T4, and was higher than the values obtained in common cast Hadfield steel (370 HV0.02 in as-cast state and 340÷370 HV0.02 after

solution heat treatment). The measured microhardness of alloyed cementite was 1030÷1270 HV0.02; the microhardness of carbides

reached even 2650÷4000 HV0.02.

Go to article

Authors and Affiliations

A. Garbacz-Klempka
G. Tęcza
Download PDF Download RIS Download Bibtex

Abstract

The wear behaviour of Cr3C2-25% NiCr laser alloyed nodular cast iron sample were analyzed using a pin-on-disc tribometer. The influence of sliding velocity, temperature and load on laser alloyed sample was focused and the microscopic images were used for metallurgical examination of the worn-out sites. Box-Behnken method was utilised to generate the mathematical model for the condition parameters. The Response Surface Methodology (RSM) based models are varied to analyse the process parameters interaction effects. Analysis of variance was used to analyse the developed model and the results showed that the laser alloyed sample leads to a minimum wear rate (0.6079×10–3 to 1.8570×10–3 mm3/m) and coefficient of friction (CoF) (0.43 to 0.53). From the test results, it was observed that the experimental results correlated well with the predicted results of the developed mathematical model.

Go to article

Authors and Affiliations

N. Jeyaprakash
M. Duraiselvam
R. Raju
Download PDF Download RIS Download Bibtex

Abstract

Equal-channel angular pressing (ECAP) was used as a technique for severe plastic deformation (SPD) on Al alloy AA3004. This technique produced fully dense materials of refined grain structure to sub-micrometer dimensions and advanced mechanical properties. The ECAP processing of samples was conducted as 1 to 4 passes through the die at room temperature. We present the results of the studied homogeneity evolution with the ECAP treatment. Furthermore, a Scanning Electron Microscope (SEM) was used for examination of the microstructure changes in samples undergone from 1 to 4 passes. The microhardness-HV increased upon each ECAP pass. The resulting micro-hardness evolution was attributed to crystalline microstructure modifications, such as the d-spacing (studied by X-ray Diffraction-XRD) depending on the number of ECAP pressings. The microcrystalline changes (grain refining evaluated from the Scanning Electron Microscopy – SEM images) were found to be related to the HV, following the Hall-Petch equation.

Go to article

Authors and Affiliations

N. Izairi
F. Ajredini
A. Vevecka-Pfiftaj
P. Makreski
M.M. Ristova
Download PDF Download RIS Download Bibtex

Abstract

In the present study, butt joints of aluminum (Al) 8011-H18 and pure copper (Cu) were produced by friction stir welding (FSW) and the effect of plunge depth on surface morphology, microstructure and mechanical properties were investigated. The welds were produced by varying the plunge depth in a range from 0.1 mm to 0.25 mm. The defect-free joints were obtained when the Cu plate was fixed at the advancing side. It was found that less plunging depth gives better tensile properties compare to higher plunging depth because at higher plunging depth local thinning occurs at the welded region. Good tensile properties were achieved at plunge depth of 0.2 mm and the tensile strength was found to be higher than the strength of the Al (weaker of the two base metals). Microstructure study revealed that the metal close to copper side in the Nugget Zone (NZ) possessed lamellar alternating structure. However, mixed structure of Cu and Al existed in the aluminum side of NZ. Higher microhardness values were witnessed at the joint interfaces resulting from plastic deformation and the presence of intermetallics.

Go to article

Authors and Affiliations

Mohd Atif Wahid
Arshad Noor Siddiquee
Zahid Akhtar Khan
Mohammad Asjad
Download PDF Download RIS Download Bibtex

Abstract

The aim of that work was the evaluation of the quality of welded connections elements (welds) from the 30HGS steel and titanium alloy Ti6Al4V. The metallographic, factographic tests were used, and measurements of microhardness with the Vickers method. In the head weld of the 30HGS steel there were non-metallic partial division and bubbles observed. The average microhardness in the head connection was 320 HV0.1. There was no significant increase/decrease observed of microhardness in the head influence zone of the weld. There was a good condition of head connections observed, in accordance with the standard EN12517 and EN25817. In the head weld of Ti6Al4V titanium alloy there were single, occasional non-metallic interjections and bubbles observed. There were no cracks both on the weld, and on the border of the heat influence zone. The value of microhardness in head connection was in the range 300÷445 HV0.1. Reveal a very good condition of the head connections in accordance with the standard EN12517 and EN25817. The factographic tests prove the correctness of welded connections done and then heat treatment in case of steel and titanium alloy.

Go to article

Authors and Affiliations

A. Dziedzic
Z. Łapiński
W. Bochnowski
S. Adamiak
S. Sandomierski

This page uses 'cookies'. Learn more