Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 10
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

The explosive rise of wireless services necessitates a network connection with high bandwidth, high performance, low mistakes, and adequate channel capacity. Individual mobile users, as well as residential and business clusters are increasingly using the internet and multimedia services, resulting in massive increases in the internet traffic demand. Over the past decade, internet traffic has grown significantly faster than Moore’s law predicted. The current system is facing significant radio frequency spectrum congestion and is unable to successfully transmit growing amounts of (available) data to end users while keeping acceptable delay values in mind. Free space optics is a viable alternative to the current radio frequency technology. This technology has a few advantages, including fast data speeds, unrestricted bandwidth, and excellent security. Since free space optics is invisible to traffic type and data protocol, it may be quickly reliably and profitably integrated into an existing access network. Despite the undeniable benefits of free space optics technology under excellent channel conditions and its wide range of applications, its broad use is hampered by its low link dependability, especially over long distances, caused by atmospheric turbulence-induced decay and weather sensitivity. The best plausible solution is to establish a secondary channel link in the GHz frequency range that works in tandem with the primary free space optics link. A hybrid system that combines free space optics and millimeter wave technologies in this research is presented. The combined system offers a definitive backhaul maintenance, by drastically improving the link range and service availability.
Go to article

Bibliography

  1. Chowdhury, M. , Hasan, M. K., Shahjalal, M., Hossan, M. T. & Jang, Y. M. Optical wireless hybrid networks: trends, opportunities, challenges, and research directions. IEEE Commun. Surv. Tutor. 22, 930–966 (2020). https://doi.org10.1109/COMST.2020.2966855
  2. Liu, G. & Jiang, D. 5G : Vision and requirements for mobile communication system towards year 2020. Chinese J. Eng. 2016, 1–8 (2016). https://doi.org/10.1155/2016/5974586
  3. Ford, R. et al. Achieving ultra-low latency in 5G millimeter wave cellular networks. IEEE Commun. Mag. 55, 196–203 (2017). https://org/10.1109/MCOM.2017.1600407CM
  4. Tunc, C., Ozkoc, M. , Fund, F. & Panwar, S. S. The blind side: latency challenges in millimeter wave networks for connected vehicle applications. IEEE Trans. Veh. Technol. 70, 529–542 (2021). https://doi.org/10.1109/TVT.2020.3046501
  5. Mikolajczyk, J. et al. Optical wireless communications operated at long-wave infrared radiation. J. Electron. Telecommun. 66, 383–387 (2020). https://doi.org/10.24425/ijet.2020.131889
  6. Mikołajczyk, J. et al. Analysis of free-space optics development. Meas. Syst. 24, 653–674 (2017). https://doi.org/10.1515/mms-2017-0060
  7. Son, I. & Mao, S. A survey of free space optical networks ☆. Digit. Commun. Netw. 3, 67–77 (2017). https://doi.org/10.1016/j.dcan.2016.11.002
  8. Khalighi, M. & Uysal, M. Survey on free space optical communication: a communication theory perspective. IEEE Commun. Surv. Tutor. 16, 2231–2258 (2014). https://doi.org/10.1109/COMST.2014.2329501
  9. Rockwell, D. & Mecherle, G. S. Wavelength selection for optical wireless communications systems. Proc. SPIE 4530, 26–35 (2001). https://doi.org/10.1117/12.449812
  10. Bloom, S., Korevaar, E., Schuster, J. & Willebrand, H. Under-standing the performance of free-space optics. Opt. Netw. 2, 178–200 (2003). https://doi.org/10.1364/JON.2.000178
  11. Willebrand, H. & Ghuman, B. Free Space Optics : Enabling Optical Connectivity In Today’s Networks. (Indianapolis, Indiana: SAMS, 2002).
  12. Jeyaseelan, J., Sriram Kumar, D. & Caroline, B. Disaster management using free space optical communication system. Photonic Netw. Commun. 39, 1–14 (2020). https://doi.org/10.1007/s11107-019-00865-9
  13. Anandkumar, D. & Sangeetha, R. A survey on performance enhancement in free space optical communication system through channel models and modulation techniques. Opt. Quantum Electron. 53, 5 (2020). https://doi.org/10.1007/s11082-020-02629-6
  14. Siegel, T. & Chen, S.-P. Investigations of free space optical communications under real-world atmospheric conditions. Pers. Commun. 116, 475–490 (2021). https://doi.org/10.1007/s11277-020-07724-1
  15. Kaur, S. Analysis of inter-satellite free-space optical link perfor-mance considering different system parameters. Opto-Electron. Rev. 27, 10–13 (2019). https://doi.org/10.1016/j.opelre.2018.11.002
  16. Shah, D., Joshi, H. & Kothari, D. Comparative BER analysis of free space optical system using wavelength diversity over exponentiated weibull channel. J. Electron. Telecommun. 67, 665–672 (2021). https://doi.org/10.24425/ijet.2021.137860
  17. Ghassemlooy, Z. & Popoola, W. Terrestrial Free-Space Optical Communications. in Mobile and Wireless Communications (eds. Fares, S. A. & Adachi, F.) 355–392 (IntechOpen, 2010). https://doi.org/10.5772/7698
  18. Ricklin, J. , Hammel, S. M., Eaton, F. D. & Lachinova, S. L. Atmospheric Channel Effects on Free-Space Laser Communication. in Optical and Fiber Communication Reports: Free-Space Laser Communications (eds. Majumdar, A. K. & Ricklin, J. C.) 9–56 (Springer, 2006). https://doi.org/10.1007/978-0-387-28677-8_2
  19. Ghassemlooy, Z., Popoola, W. & Rajbhandari, S. Optical Wireless Communications: System and Channel Modelling with Matlab®. (CRC press, 2019).
  20. Kim, I. , McArthur, B. & Korevaar, E. J. Comparison of Laser Beam Propagation at 785 Nm And 1550 Nm In Fog And Haze For Optical Wireless Communications. in Optical Wireless Communications, Proc. SPIE 4214, 26–37 (2001). https://doi.org/10.1117/12.417512
  21. Al Naboulsi, M. Sizun, H. & de Fornel, F. Fog attenuation prediction for optical and infrared waves. Opt. Eng. 43, 319–329 (2004). https://doi.org/10.1117/1.1637611
  22. Brown, R. W. Optical channels. Fibres, clouds, water and the atmosphere. J. Mod. Opt. 36, 552 (1989). https://doi.org/10.1080/09500348914550651
  23. Sree Madhuri, A., Immadi, G. & Venkata Narayana, M. Estimation of effect of fog on terrestrial free space optical communication link. Pers. Commun. 112, 1229–1241 (2020). https:/doi.org/10.1007/s11277-020-07098-4
  24. Friedlander, S. & Topper, L. Turbulence: Classic Papers on Statistical Theory. (Interscience Publishers, 1961).
  25. Kolmogorov, A. The local structure of turbulence in incom-pressible viscous fluid for very large Reynolds numbers. Proc. R. Soc. A 434, 9–13 (1991). https://doi.org/10.1098/rspa.1991.0075
  26. Zhu, X. & Kahn, J. Free-space optical communication through atmospheric turbulence channels. IEEE Trans. Commun. 50, 1293–1300 (2002). https://doi.org/10.1109/TCOMM.2002.800829
  27. Dat, P. et al. A Study on Transmission of RF Signals over a Turbulent Free Space Optical Link. in 2008 IEEE Int. Topical Meeting on Microwave Photonics jointly held with 2008 Asia-Pacific Microwave Photonics Conf. 173–176 (2008) https://doi.org/10.1109/MWP.2008.4666664
  28. Makarov, D. , Tretyakov, M. Y. & Rosenkranz, P. W. Revision of the 60-GHz atmospheric oxygen absorption band models for practical use. J. Quant. Spectrosc. Radiat. Transf. 243, 106798 (2020). https://doi.org/10.1016/j.jqsrt.2019.106798
  29. He, Q., Li, J., Wang, Z. & Zhang, L. Comparative study of the 60 GHz and 118 GHz oxygen absorption bands for sounding sea surface barometric pressure. Remote Sens. 14, 2260 (2022). https://doi.org/10.3390/rs14092260
  30. Arvas, M. & Alsunaidi, M. Analysis of Oxygen Absorption at 60 GHz Frequency Band. in 2019 IEEE International Symposium on Antennas and Propagation and USNC-URSI Radio Science Meeting Proc. 2127–2128 (2019) https://doi.org/10.1109/APUSNCURSINRSM.2019.8888884
  31. ITU-R Recomendation. Attenuation Due to Clouds and Fog https://www.itu.int/rec/R-REC-P.840-3-199910-S/en (1999).
  32. Crane, R. A Two-Component Rain Model For the Prediction of Attenuation and Diversity Improvement https://ntrs.nasa.gov/api/citations/19820025716/downloads/19820025716.pdf (1982).
  33. ITU-R Recomendation. Recommendation Itu-R P.838-1 Specific Attenuation Model for Rain for Use in Prediction Methods https://www.itu.int/dms_pubrec/itu-r/rec/p/R-REC-P.838-1-199910-S!!PDF-E.pdf (1999).
  34. Amarasinghe, Y., Zhang, W., Zhang, R., Mittleman, D. & Ma, J. Scattering of terahertz waves by snow. J. Infrared Millim. Terahertz Waves 41, 215–224 (2020). https://doi.org/10.1007/s10762-019-00647-4
  35. Davis, C. , Smolyaninov, I. I. & Milner, S. D. Flexible optical wireless links and networks. IEEE Commun. Mag. 41, 51–57 (2003). https://doi.org/10.1109/MCOM.2003.1186545
Go to article

Authors and Affiliations

Isanaka Lakshmi Priya
1
ORCID: ORCID
Murugappa Meenakshi
1
ORCID: ORCID

  1. Department of Electronics and Communication, Anna University, Guindy, Chennai 600025, India
Download PDF Download RIS Download Bibtex

Abstract

VTT Technical Research Centre of Finland Ltd. has developed and utilized Low Temperature Co-fired Ceramic (LTCC) technology for about 25 years. This paper presents our activities related to photonics and millimetre-waves, including also a relevant literature survey. First a short summary of the technology is given. Especially, the unique features of LTCC technology are described in more details. In addition, several examples have been given to show the validity of LTCC technology in these high-performance fields.

Go to article

Authors and Affiliations

Markku Lahti
Kari Kautio
Mikko Karppinen
Kimmo Keränen
Jyrki Ollila
Pentti Karioja
Download PDF Download RIS Download Bibtex

Abstract

We are presenting a new low-cost Single Sideband (SSB) modulated Radio-over Fiber (RoF) communication system for millimeter (mm)-wave multiband wireless communication at the frequencies of 40 GHz, 80 GHz and 120 GHz. Its principle lies in the Carrier Suppressed modulation through a nested dual electrode Mach–Zehnder Modulator (MZM) and product modulator based baseband signal decomposition. In this novel method, the optical signal is decomposed into different SSB signals using a power splitter and product modulators at the base station. This proposed method uses a different technique for a baseband signal decomposition from the existing method. The proposed signal decomposition technique has reduced the nonlinearities due to the FBGs. The proposed method is compared with the existing method in terms of BER, data rate and OSNR. The simulation results disclose that our proposed scheme outperforms the existing methods at a higher data rate of 80 Gbps with a minimum BER and privileged Q factor.

Go to article

Authors and Affiliations

R.S. Asha
V.K. Jayasree
S. Mhatli
Download PDF Download RIS Download Bibtex

Abstract

One of the crucial advancements in next-generation 5G wireless networks is the use of high-frequency signals specifically those are in the millimeter wave (mm-wave) bands. Using mmwave frequency will allow more bandwidth resulting higher user data rates in comparison to the currently available network. However, several challenges are emerging (such as fading, scattering, propagation loss etc.), whenever we utilize mm-wave frequency wave bands for signal propagation. Optimizing propagation parameters of the mm-wave channels system are much essential for implementing in the real-world scenario. To keep this in mind, this paper presents the potential abilities of high frequencies signals by characterizing the indoor small cell propagation channel for 28, 38, 60 and 73 GHz frequency band, which is considered as the ultimate frequency choice for many of the researchers. The most potential Close-In (CI) propagation model for mm-wave frequencies is used as a Large-scale path loss model. Results and outcomes directly affecting the user experience based on fairness index, average cell throughput, spectral efficiency, cell-edge user’s throughput and average user throughput. The statistical results proved that these mm-wave spectrum gives a sufficiently greater overall performance and are available for use in the next generation 5G mobile communication network.

Go to article

Authors and Affiliations

Faizan Qamar
MHD Nour Hindia
Talib Abbas
Kaharudin Bin Dimyati
Iraj S. Amiri
Download PDF Download RIS Download Bibtex

Abstract

Hybrid precoding techniques are lately involved a lot of interest for millimeter-wave (mmWave) massive MIMO systems is due to the cost and power consumption advantages they provide. However, existing hybrid precoding based on the singular value decomposition (SVD) necessitates a difficult bit allocation to fit the varying signal-to-noise ratios (SNRs) of altered sub-channels. In this paper, we propose a generalized triangular decomposition (GTD)-based hybrid precoding to avoid the complicated bit allocation. The development of analog and digital precoders is the reason for the high level of design complexity in analog precoder architecture, which is based on the OMP algorithm, is very non-convex, and so has a high level of complexity. As a result, we suggest using the GTD method to construct hybrid precoding for mmWave mMIMO systems. Simulated studies as various system configurations are used to examine the proposed design. In addition, the archived findings are compared to a hybrid precoding approach in the classic OMP algorithm. The proposed Matrix Decomposition’s simulation results of signal-to-noise ratio vs spectral efficiencies.
Go to article

Authors and Affiliations

Sammaiah Thurpati
1
P. Muthuchidambaranathan
1

  1. Department of Electronics and Communication Engineering, National Institute of Technology, Tiruchirappalli, India
Download PDF Download RIS Download Bibtex

Abstract

Beamforming training (BT) is considered as an essential process to accomplish the communications in the millimeter wave (mmWave) band, i.e., 30 ~ 300 GHz. This process aims to find out the best transmit/receive antenna beams to compensate the impairments of the mmWave channel and successfully establish the mmWave link. Typically, the mmWave BT process is highly-time consuming affecting the overall throughput and energy consumption of the mmWave link establishment. In this paper, a machine learning (ML) approach, specifically reinforcement learning (RL), is utilized for enabling the mmWave BT process by modeling it as a multi-armed bandit (MAB) problem with the aim of maximizing the long-term throughput of the constructed mmWave link. Based on this formulation, MAB algorithms such as upper confidence bound (UCB), Thompson sampling (TS), epsilon-greedy (e-greedy), are utilized to address the problem and accomplish the mmWave BT process. Numerical simulations confirm the superior performance of the proposed MAB approach over the existing mmWave BT techniques.
Go to article

Authors and Affiliations

Ehab Mahmoud Mohamed
1 2

  1. Electrical Engineering Dept., College of Engineering, Prince Sattam Bin Abdulaziz University, Wadi Aldwaser 11991, Saudi Arabia
  2. Electrical Engineering Dept., Faculty of Engineering Aswan University, Aswan 81542, Egypt
Download PDF Download RIS Download Bibtex

Abstract

In this paper a design of millimeter-wave six-port device for LTCC (Low Temperature Cofired Ceramic) technology is presented. Furthermore, problems with implementation of the project taking into account requirements of LTCC technology are discussed.

Go to article

Authors and Affiliations

Barbara Słojewska
Yevhen Yashchyshyn
Download PDF Download RIS Download Bibtex

Abstract

Future wireless communication networks will be largely characterized by small cell deployments, typically on the order of 200 meters of radius/cell, at most. Meanwhile, recent studies show that base stations (BS) account for about 80 to 95 % of the total network power. This simply implies that more energy will be consumed in the future wireless network since small cell means massive deployment of BS. This phenomenon makes energy-efficient (EE) control a central issue of critical consideration in the design of future wireless networks. This paper proposes and investigates (the performance of) two different energy-saving approaches namely, adaptive-sleep sectorization (AS), adaptive hybrid partitioning schemes (AH) for small cellular networks using smart antenna technique. We formulated a generic base-model for the above-mentioned schemes and applied the spatial Poisson process to reduce the system complexity and to improve flexibility in the beam angle reconfiguration of the adaptive antenna, also known as a smart antenna (SA). The SA uses the scalable algorithms to track active users in different segments/sectors of the microcell, making the proposed schemes capable of targeting specific users or groups of users in periods of sparse traffic, and capable of performing optimally when the network is highly congested. The capabilities of the proposed smart/adaptive antenna approaches can be easily adapted and integrated into the massive MIMO for future deployment. Rigorous numerical analysis at different orders of sectorization shows that among the proposed schemes, the AH strategy outperforms the AS in terms of energy saving by about 52 %. Generally, the proposed schemes have demonstrated the ability to significantly increase the power consumption efficiency of micro base stations for future generation cellular systems, over the traditional design methodologies.
Go to article

Bibliography

[1] F. Qamar, M. U. A. Siddiqui, M. Hindia, R. Hassan, and Q. N. Nguyen, "Issues, Challenges, and Research Trends in Spectrum Management: A Comprehensive Overview and New Vision for Designing 6G Networks," Electronics, vol. 9, no. 9, p. 1416, 2020.
[2] M. N. Hindia, F. Qamar, H. Ojukwu, K. Dimyati, A. M. Al-Samman, and I. S. Amiri, "On Platform to Enable the Cognitive Radio Over 5G Networks," Wireless Personal Communications, vol. 113, no. 2, pp. 1241-1262, 2020.
[3] S. Malathy et al., "An optimal network coding based backpressure routing approach for massive IoT network," Wireless Networks, pp. 1-18, 2020.
[4] F. Qamar, M. H. S. Siddiqui, M. N. Hindia, K. Dimyati, T. Abd Rahman, and M. S. A. Talip, "Propagation Channel Measurement at 38 GHz for 5G mm-wave communication Network," in 2018 IEEE Student Conference on Research and Development (SCOReD), 2018: IEEE, pp. 1-6.
[5] T. Abbas, F. Qamar, I. Ahmed, K. Dimyati, and M. B. Majed, "Propagation channel characterization for 28 and 73 GHz millimeter-wave 5G frequency band," in Research and Development (SCOReD), 2017 IEEE 15th Student Conference on, 2017: IEEE, pp. 297-302.
[6] F. Qamar, K. Dimyati, M. N. Hindia, K. A. Noordin, and I. S. Amiri, "A stochastically geometrical poisson point process approach for the future 5G D2D enabled cooperative cellular network," IEEE Access, vol. 7, pp. 60465-60485, 2019.
[7] F. Qamar et al., "Investigation of future 5G-IoT millimeter-wave network performance at 38 GHz for urban microcell outdoor environment," Electronics, vol. 8, no. 5, p. 495, 2019.
[8] M. N. Hindia, F. Qamar, T. A. Rahman, and I. S. Amiri, "A stochastic geometrical approach for full-duplex MIMO relaying model of high-density network," Ad Hoc Networks, vol. 74, pp. 34-46, 2018.
[9] A. Gachhadar, F. Qamar, D. S. Dong, M. B. Majed, E. Hanafi, and I. S. Amiri, "Traffic Offloading in 5G Heterogeneous Networks using Rank based Network Selection," Journal of Engineering Science and Technology Review, vol. 12, no. 2, pp. 9-16, 2019.
[10] J. Zhang, X. Ge, Q. Li, M. Guizani, and Y. Zhang, "5G millimeter-wave antenna array: design and challenges," IEEE Wireless Communications, vol. 24, no. 2, pp. 106-112, 2017.
[11] F. Qamar, M. N. Hindia, K. Dimyati, K. A. Noordin, and I. S. Amiri, "Interference management issues for the future 5G network: a review," Telecommunication Systems, pp. 1-17, 2019.
[12] Mohd Zaki, I., & Rosilah, H. (2019). The Implementation of Internet of Things using Test Bed in the UKMnet Environment. Asia-Pac. J. Inf. Technol. Multimed, 8.
[13] C. Isheden, Z. Chong, E. Jorswieck, and G. Fettweis, "Framework for link-level energy efficiency optimization with informed transmitter," IEEE Transactions on Wireless Communications, vol. 11, no. 8, pp. 2946-2957, 2012.
[14] D. Willkomm, S. Machiraju, J. Bolot, and A. Wolisz, "Primary user behavior in cellular networks and implications for dynamic spectrum access," IEEE Communications Magazine, vol. 47, no. 3, 2009.
[15] M. N. Hindia, F. Qamar, M. B. Majed, T. A. Rahman, and I. S. Amiri, "Enabling remote-control for the power sub-stations over LTE-A networks," Telecommunication Systems, pp. 1-17, 2018.
[16] J. Joung, C. K. Ho, and S. Sun, "Tradeoff of spectral and energy efficiencies: Impact of power amplifier on OFDM systems," in Global Communications Conference (GLOBECOM), 2012 IEEE, 2012: IEEE, pp. 3274-3279.
[17] G. Auer et al., "D2. 3: Energy efficiency analysis of the reference systems, areas of improvements and target breakdown," Earth, vol. 20, no. 10, 2010.
[18] L. M. Correia et al., "Challenges and enabling technologies for energy aware mobile radio networks," IEEE Communications Magazine, vol. 48, no. 11, 2010.
[19] F. Qamar, K. B. Dimyati, M. N. Hindia, K. A. B. Noordin, and A. M. Al-Samman, "A comprehensive review on coordinated multi-point operation for LTE-A," Computer Networks, vol. 123, pp. 19-37, 2017.
[20] K. A. B. Noordin, M. N. Hindia, F. Qamar, and K. Dimyati, "Power allocation scheme using PSO for amplify and forward cooperative relaying network," in Science and information conference, 2018: Springer, pp. 636-647.
[21] R. Giuliano, F. Mazzenga, and F. Vatalaro, "Smart cell sectorization for third generation CDMA systems," Wireless Communications and Mobile Computing, vol. 2, no. 3, pp. 253-267, 2002.
[22] Z. Hasan, H. Boostanimehr, and V. K. Bhargava, "Green cellular networks: A survey, some research issues and challenges," arXiv preprint arXiv:1108.5493, 2011.
[23] G. Cili, H. Yanikomeroglu, and F. R. Yu, "Cell switch off technique combined with coordinated multi-point (CoMP) transmission for energy efficiency in beyond-LTE cellular networks," in 2012 IEEE International Conference on Communications (ICC), 2012: IEEE, pp. 5931-5935.
[24] C. Liu, B. Natarajan, and H. Xia, "Small cell base station sleep strategies for energy efficiency," IEEE Transactions on Vehicular Technology, vol. 65, no. 3, pp. 1652-1661, 2015.
[25] Y. Wu, S. Fahmy, and N. B. Shroff, "Optimal sleep/wake scheduling for time-synchronized sensor networks with QoS guarantees," IEEE/ACM Transactions on Networking (TON), vol. 17, no. 5, pp. 1508-1521, 2009.
[26] C. Hartmann, Radio Resource Management in Cellular F/TDMA Smart Antenna Systems. Herbert Utz Verlag, 2017.
[27] D. González, H. Hakula, A. Rasila, and J. Hämäläinen, "Spatial mappings for planning and optimization of cellular networks," IEEE/ACM Transactions on Networking, vol. 26, no. 1, pp. 175-188, 2017.
[28] I. Amiri, D. S. Dong, Y. M. Pokhrel, A. Gachhadar, R. K. Maharjan, and F. Qamar, "Resource Tuned Optimal Random Network Coding for Single Hop Multicast future 5G Networks," International Journal of Electronics and Telecommunications, vol. 65, no. 3, pp. 463-469, 2019.
[29] A. Ebrahim and E. Alsusa, "Interference and resource management through sleep mode selection in heterogeneous networks," IEEE Transactions on Communications, vol. 65, no. 1, pp. 257-269, 2017.
[30] H. Zhang, S. Huang, C. Jiang, K. Long, V. C. Leung, and H. V. Poor, "Energy efficient user association and power allocation in millimeter-wave-based ultra dense networks with energy harvesting base stations," IEEE Journal on Selected Areas in Communications, vol. 35, no. 9, pp. 1936-1947, 2017.
[31] A. H. M. Aman, E. Yadegaridehkordi, Z. S. Attarbashi, R. Hassan, and Y.-J. Park, "A Survey on Trend and Classification of Internet of Things Reviews," IEEE Access, vol. 8, pp. 111763-111782, 2020.
[32] L. Fan, R. Zhao, F.-K. Gong, N. Yang, and G. K. Karagiannidis, "Secure multiple amplify-and-forward relaying over correlated fading channels," IEEE Transactions on Communications, vol. 65, no. 7, pp. 2811-2820, 2017.
[33] M. N. Hindia, M. M. Fadoul, T. Abdul Rahman, and I. S. Amiri, "A Stochastic Geometry Approach to Full-Duplex MIMO Relay Network," Wireless Communications and Mobile Computing, vol. 2018, 2018.
[34] J.-A. Tsai, R. M. Buehrer, and B. D. Woerner, "BER performance of a uniform circular array versus a uniform linear array in a mobile radio environment," IEEE Transactions on Wireless Communications, vol. 3, no. 3, pp. 695-700, 2004.
[35] S. W. Turner and S. Uludag, "6 Toward Smart Cities," Smart Grid: Networking, Data Management, and Business Models, p. 117, 2017.
[36] A. Gachhadar, M. N. Hindia, F. Qamar, M. H. S. Siddiqui, K. A. Noordin, and I. S. Amiri, "Modified genetic algorithm based power allocation scheme for amplify-and-forward cooperative relay network," Computers & Electrical Engineering, 2018.
Go to article

Authors and Affiliations

MHD Nour Hindia
1
Faizan Qamar
2
Henry Ojukwu
1
Rosilah Hassan
3
Kaharudin Dimyati
1

  1. Department of Electrical Engineering, Faculty of Engineering, University of Malaya, 50603 Kuala Lumpur, Malaysia
  2. Faculty of Information Science and Technology, Universiti Kebangsaan Malaysia (UKM), 43600 Bangi, Selangor, Malaysia
  3. Network and Communication Technology (NCT) Lab, Centre for Cyber Security, Fakulti Teknologi & Sains Maklumat (FTSM), Universiti Kebangsaan Malaysia (UKM), 43600 UKM, Bangi, Selangor Malaysia
Download PDF Download RIS Download Bibtex

Abstract

With the advent of massive MIMO and mmWave, Antenna selection is the new frontier in hybrid beamforming employed in 5G base stations. Tele-operators are reworking on the components while upgrading to 5G where the antenna is a last-mile device. The burden on the physical layer not only demands smart and adaptive antennas but also an intelligent antenna selection mechanism to reduce power consumption and improve system capacity while degrading the hardware cost and complexity. This work focuses on reducing the power consumption and finding the optimal number of RF chains for a given millimeter wave massive MIMO system. At first, we investigate the power scaling method for both perfect Channel State Information (CSI) and imperfect CSI where the power is reduced by ��/���� and ��/√���� respectively. We further propose to reduce the power consumption by emphasizing on the subdued resolution of Analog-to-Digital Converters (ADCs) with quantization awareness. The proposed algorithm selects the optimal number of antenna elements based on the resolution of ADCs without compromising on the quality of reception. The performance of the proposed algorithm shows significant improvement when compared with conventional and random antenna selection methods.

Go to article

Authors and Affiliations

Abdul Haq Nalband
Mrinal Sarvagya
Mohammed Riyaz Ahmed
Download PDF Download RIS Download Bibtex

Abstract

Millimeter-wave (mm-wave) transmitters are often fabricated using advanced technology and require a sophisticated manufacturing facility. Access to such technologies is often very limited and difficult to gain particularly at the initial stage of research. Therefore, to increase the accessibility of mm-wave transmitters, this study proposes a design that can be assembled in a standard microwave laboratory from commercially available or externally ordered components. The transmitter demonstrated in this paper operates above 100 GHz and is based on a lowtemperature co-fired ceramic board in which the antenna array, microstrip lines, and power-supply lines are fabricated in a single process. Different technologies are used to assemble the module, e.g., wire-bonding, soldering, and wax adhesion. Advantages and disadvantages of the proposed design are given based on experimental evaluation of the prototype. Although the performance of the developed transmitter is not as good as that of the similar modules available in the recent literature, the results confirm the feasibility of a mm-wave transmitter that is assembled without employing advanced technologies and superior machinery.
Go to article

Authors and Affiliations

Paweł Bajurko
1
Jakub Sobolewski
1
Grzegorz Bogdan
1
Konrad Godziszewski
1
Jacek Marczewski
2
Jan Kulawik
2
Michał Widlok
3
Yevhen Yashchyshyn
1

  1. Warsaw University of Technology, Institute of Radioelectronics and Multimedia Technology, Warsaw, Poland
  2. Łukasiewicz Research Network, Institute of Microelectronics and Photonics, Warsaw, Poland
  3. SIRC Sp. z o.o., Gdynia, Poland

This page uses 'cookies'. Learn more