Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 4
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

The work involved assessment of the Myzus persicae (Sulz.) capability to infect successively potato plants with PVY and PVM after a Sunspray 850 EC mineral oil application. The tests were carried out in the greenhouse, with 4-week-old, healthy potato plants possessing low ressistance to viruses, derived from in vitro (test plants). Any time, for each combination and each virus, 10 successive plants were inoculated in 6 repetitions. Virus sources were potato plants infected with PVY or PVM, kept in isolated rooms. As a result of oil application, feeding of the M. persicae specimens on plants previously treated with this oil was delayed. The highest reduction as regards PVY and PVM transmission by M. persicae was obtained in the treatment where both plants constituting virus sources and test plants were protected, because only two of ten plants were infected with PVY, and only one with PVM. Mineral oil application only on potato test plants (healthy ones) reduced to a small degree M. persicae capability to transmit PVY to six successive plants (to seven in control), whereas it was much higher for PVM – to three (to six in control). In the case when only plants constituting virus sources were oil-protected, aphid’s capability to transmit PVY was limited only to four plants, and PVM – to two. These results seem to confirm much more the hypothesis that mineral oil inactivates virus particles in the stylets of aphids while they attempt to acquire it from plants which have been previously protected with mineral oil.

Go to article

Authors and Affiliations

Sławomir Wróbel
Download PDF Download RIS Download Bibtex

Abstract

It seems that essential oils can be a good ingredient in effective preparations against Dermanyssus gallinae. Dermanyssus affects animal health leading to financial losses and bird welfare issues. Collected mites were treated with various essential oils in four (20, 50, 80 and 100%) concentrations at a dose of 0.28 mg/cm2. The direct toxicity of the essential oils, mineral oil and spinosad to D. gallinae was tested in the laboratory. Eucalyptus oil was the most toxic essential oil in all concentrations to D. gallinae (87.6 - 97.6% mortality at all four concentrations), while geranium, pine and rosemary oils showed mortality rates of 14.2 - 68.2%. High mortality after 48 hours of contact was also recorded for the oil of cloves at 80% dilution (85.1% mortality), lavender 100% (94.2% mortality). Similarly, the thyme essential oil produced 83.5 - 93.2% mortality in three concentrations: 50, 80 and 100%. The mineral oil was the least effective oil against mites. Spinosad showed high effectiveness against D. gallinae.
Go to article

Bibliography


Anastas P, Kirchchoff M, Williamson T (1999) Green Chemistry awards: spinosad – a new natural product for insect control. Green Chem 1: G88.
Axtell RC (1999) Poultry integrated pest management: Status and future. Integr Pest Manag Rev 4: 53-73.
Beugnet F, Chauve C, Gauthey M, Beert L (1997) Resistance of the red poultry mite to pyrethroids in France. Vet Rec 140: 577-579.
Bobrek K, Gaweł A (2017) Invasion of Red Mite ( Dermanyssus gallinae) as a cause of foot self-mutilation in a laying hen flock. Pak Vet J 37: 242-244.
Bordin C, Alves DS, Alves LF, Oliveira MS, Ascari J, Scharf DR (2021) Fumigant activity of essential oils from Cinnamomum and Citrus spp. and pure compounds against Dermanyssus gallinae (De Geer) (Acari: Derma nyssidae) and toxicity toward the nontarget organ-ism Beauveria bassiana (Vuill.). Vet Parasitol 290: 109341.
Cernea LC, Şuteu E, Cernea M, Lefkaditis M, Cozma V (2006) Realization of an experimental model for in vitro testing of the acaricidal effect of the vegetal extracts. Rev Sci Parasitol 7: 35-40.
Chalchat JC, Ozcan MM, Dagdelden A, Akgul A (2007) Variability of essential oil composition of Echinophora tenuifolia subsp. sibthorpiana Tutin by harvest location and year and oil storage. Chem Nat Comp 43: 225-227.
Chauve C (1998) The poultry red mite Dermanyssus gallinae (De Geer 1778): current situation and future prospects for control. Vet Parasitol 79: 239-245.
Chen Z, van Mol W, Vanhecke M, Duchateau L, Claerebout E (2019) Acaricidal activity of plant-derived essential oil components against Psoroptes ovis in vitro and in vivo. Parasit Vectors 12: 425.
Chiasson H, Bélanger A, Bostanian N, Vincent C, Poliquin A (2001) Acaricidal properties of Artemisia absinthium and Tanacetum vulgare (Asteraceae) essential oils obtai ned by three methods of extraction. J Econ Entomol 94: 167-171.
Ciesielska J, Malusà E, Sas Paszt L (2011) “Plant protection products used in organic farming”. In: Ligocka T (ed) “Development of innova-tive technologies for ecological production of fruit plants”. PPHU “Graf-Sad”. Free copy co-financed by the European Union from the Euro-pean Regional Development Fund under the Operational Program Innovative Economy Contract N. UDA-POIG. 01.03.01-10-109/08-00.
Circella E, Pugliese N, Todisco G, Cafiero MA, Sparagano OA, Camarda A (2011) Chlamydia psittaci infection in canaries heavily infested by Dermanyssus gallinae. Exp Appl Acarol 55: 329-338.
Cosoroaba I (2001) Massive Dermanyssus gallinae invasion in battery-husbandry raised fowls. Revue Méd Vét 152: 89-96.
Di Palma A, Giangaspero A, Cafiero MA, Germinara GS (2012) A gallery of the key characters to ease identification of Dermanyssus gallinae (Acari: Gamasida: Dermanyssidae) and allow differentiation from Ornithonyssus sylviarum (Acari: Gamasida: Macro-nyssidae). Parasit Vectors 5: 104.
Entrekin DL, Oliver JH Jr (1982) Aggregation of the chicken mite, Dermanyssus gallinae (Acari: Dermanyssidae). J Med Entomol 19: 671-678.
Fiddes MD, Le Gresley S, Parsons DG, Epe C, Coles GC, Stafford KA (2005) Prevalence of the poultry red mite ( Dermanyssus gallinae) in England. Vet Rec 157: 233-235.
Flamini G, Cioni PL (2007) Seasonal variation of the chemical constituents of the essential oil of Santolina etrusca from Italy. Chem Biodivers 4: 1008-1019.
Gay M, Lempereur L, Francis F, Caparros Megido R (2020) Control of Dermanyssus gallinae (De Geer 1778) and other mites with volatile organic compounds, a review. Parasitology 147: 731­739.
George DR, Masic D, Sparagano OA, Guy JH (2009a) Variation in chemical composition and acaricidal activity against Dermanyssus gallinae of four eucalyptus essential oils. Exp Appl Acarol 48: 43-50.
George DR, Shiel RS, Appleby WG, Knox A, Guy JH (2010) In vitro and in vivo aca-ricidal activity and residual toxicity of spinosad to the poultry red mite, Dermanyssus gallinae. Vet Parasitol 173: 307-316.
George DR, Smith TJ, Shiel RS, Sparagano OA, Guy JH (2009b) Mode of action and variability in efficacy of plant essential oils showing toxicity against the poultry red mite, Dermanyssus gallinae. Vet Parasitol 161: 276-282.
George DR, Smith TJ, Sparagano OA, Guy JH (2008) The influence of ‘time since last blood meal’ on the toxicity of essential oils to the poultry red mite ( Dermanyssus gallinae). Vet Parasitol 155: 333-335.
Gharbi M, Sakly N, Darghouth MA (2013) Prevalence of Dermanyssus gallinae (Mesostigmata: Dermanyssidae) in industrial poultry farms in North-East Tunisia. Parasite 20: 41.
Guimarães JH, Tucci EC (1992) Evaluation of the efficiency of mineral oil in the control of Dermanyssus gallinae (De Geer, 1778) (Acari: Dermanyssidae), under field and laboratory conditions. Rev Bras Entomol 36: 859-862.
Hoffmann G (1987) Bird mites as burdens, disease generators and vectors in humans and livestock. Dtsch Tierarztl Wschr 95: 7-10.
Immediato D, Figueredo LA, Iatta R, Camarda A, Nogueira de Luna RL, Giangaspero A, Brandão-Filho SP, Otranto D, Cafarchia C (2016) Essential oils and Beauveria bassiana against Dermanyssus gallinae (Acari: Dermanyssidae): toward new natural acaricides. Vet Parasitol 229: 159-165.
Isman MB (1999) Pesticides based on plant essential oils. Pestic Outlook 10: 68-72.
Isman MB (2008) Botanical insecticides: for richer, for poorer. Pest Manag Sci 64: 8-11.
Jilani G, Saxena R C, Rueda B P (1988) Repellent and growth-inhibiting effects of turmeric oil, sweetflag oil, neem oil and Margosan-O on red flour beetle (Coleoptera: Tenebrionidae). J Econ Entomol 81: 1226-1230.
Kim SI, Na YE, Yi JH, Kim BS, Ahn YJ (2007) Contact and fumigant toxicity of oriental medicinal plant extracts against Dermanyssus gallinae (Acari: Dermanyssidae). Vet Parasitol 145: 377-382.
Kim JR, Perumalsamy H, Lee JH, Ahn YJ, Lee YS, Lee SG (2016) Acaricidal activity of Asarum heterotropoides root-derived com-pounds and hydrodistillate constitutes toward Dermanyssus gallinae (Mesostigmata: Dermanyssidae). Exp Appl Acarol 68: 485-495.
Kim SI, Na YE, Yi JH, Kim BS, Ahn YJ (2007) Contact and fumigant toxicity of oriental medicinal plant extracts against Dermanyssus gallinae (Acari: Dermanyssidae). Vet Parasitol 145: 377-382.
Kim SI, Yi JH, Tak JH, Ahn YJ (2004) Acaricidal activity of plant essential oils against Dermanyssus gallinae (Acari: Dermanyssidae). Vet Parasitol 120: 297-304.
Koenraadt CJ, Dicke M (2010) The role of volatiles in aggregation and host-seeking of the haematophagous poultry red mite Dermanyssus gallinae (Acari: Dermanyssidae). Exp Appl Acarol 50: 191-199.
Kostyukovsky M, Rafaeli A, Gileadi C, Demchenko N, Shaaya E (2002) Activation of octopaminergic receptors by essential oilconstituents isolated from aromatic plants: Possible mode of action against insect pests. Pest Manag Sci 58: 1101-1106.
Kowalski A, Sokół R (2009) Influence of Dermanyssus gallinae (poultry red mite) invasion on the plasma levels of corticosterone, catecholamines and proteins in layer hens. Pol J Vet Sci 12: 231-235.
Lee SJ, Kim HK, Kim GH (2019) Toxicity and effects of essential oils and their components on Dermanyssus gallinae (Acari: Dermanyssidae). Exp Appl Acarol 78: 65-78.
Magdaş C, Cernea M, Baciu H, Şuteu E (2010) Acaricidal effect of eleven essential oils against the poultry red mite Dermanyssus galli-nae (Acari: Dermanyssidae). Sci Parasitol 11: 71-75.
Marangi M, Cafiero MA, Capelli G, Camarda A, Sparagano OA, Giangaspero A (2009) Evaluation of the poultry red mite, Dermanyssus gallinae (Acari: Dermanyssidae), susceptibility to some acaricides in field populations from Italy. Exp Appl Acarol 48: 11-18.
Martinez-Velazquez M, Castillo-Herrera GA, Rosario-Cruz R, Flores-Fernandez JM, Lopez-Ramirez J, Hernandez -Gutierrez R, Lu-go-Cervantes EC (2011) Acaricidal effect and chemical composition of essential oils extracted from Cuminum cyminum, Pimenta dioica and Ocimum basilicum against the cattle tick Rhipicephalus (Boophilus) microplus (Acari: Ixodidae). Parasitol Res 108: 481-487.
Maurer V, Perler E, Heckendorn F (2009) In vitro efficacies of oils, silicas and plant preparations against the poultry red mite Dermanyssus gallinae. Exp Appl Acarol 48: 31-41.
Meyer-Kühling B, Pfister K, Müller-Lindloff J, Heine J (2007) Field efficacy of phoxim 50% (ByeMite) against the poultry red mite Dermanyssus gallinae in battery cages stocked with laying hens. Vet Parasitol 147: 289-296.
Miresmailli S, Bradbury R, Isman MB (2006) Comparative toxicity of Rosmarinus officinalis L. essential oil and blends of its major constituents against Tetranychus urticae Koch (Acari: Tetranychidae) on two different host plants. Pest Manag Sci 62: 366-371.
Moreno PR, Lima ME, Sobral M, Young MC, Cordeiro I, Apel MA, Limberger RP, Henriques AT (2007) Essential oil composition of fruit colour varieties of Eugenia brasiliensis Lam. Sci Agric 64: 428-432.
Mul M, van Niekerk T, Chirico J, Maurer V, Kilpinen O, Sparagano O, Thind B, Zoons J, Moor D, Bell B, Gjevre AG, Chauve C (2009) Control methods for Dermanyssus gallinae in systems for laying hens: Results of an international seminar. World’s Poult Sci J 65: 589-600.
Muñoz-Bertomeu J, Sales E, Ros R, Arrillaga I, Segura J (2007) Up-regulation of an N-terminal truncated 3-hydroxy-3-methylglutaryl CoA reductase enhances production of essential oils and sterols in transgenic Lavandula latifolia. Plant Biotechnol J 5: 746-758.
Nechita IS, Poirel MT, Cozma V, Zenner L (2015) The repellent and persistent toxic effects of essential oils against the poultry red mite, Dermanyssus gallinae. Vet Parasitol 214: 348-352.
Negahban M, Moharramipour S, Sefidkon F (2007) Fumigant toxicity of essential oil from Artemisia sieberi Besser against three stored-product insects. J Stor Prod Res 43: 123-128.
Piskorski R, Ineichen S, Dorn S (2011) Ability of the Oriental Fruit Moth Grapholita molesta (Lepidoptera: Tortricidae) to Detoxify Juglone, the Main Secondary Metabolite of the Non-host Plant Walnut. J Chem Ecol 37: 1110-1116.
Prabuseenivasan S, Jayakumar M, Ignacimuthu S (2006) In vitro antibacterial activity of some plant essential oils. BMC Complement Altern Med 6: 39.
Raal A, Orav A, Arak E (2007) Composition of the essential oil of Salvia officinalis L. from various European countries. Nat Prod Res 21: 406-411.
Radsetoulalova I, Hubert J, Hampel D, Lichovnikova M (2020) Active components of essential oils as acaricides against Dermanyssus galli-nae. Br Poult Sci 61: 169-172.
Raele DA, Galante D, Pugliese N, La Salandra G, Lomuto M, Cafiero MA (2018) First report of Coxiella burnetii and Borrelia burgdorferi sensu lato in poultry red mites, Dermanyssus gallinae ( Mesostigmata, Acari) , related to urban outbreaks of dermati-tis in Italy. New Microbes New Infect 23: 103-109.
Rajabpour A, Mashhadi AR, Ghorbani MR (2018) Acaricidal and repellent properties of some plant extracts against poultry red mite, Dermanyssus gallinae (Mesostigmata: Dermanyssidae). Persian J Acarol 7: 85-91.
Rezaei F, Hashemnia M, Chalechale A, Seidi S, Gholizadeh M (2016) Prevalence of ectoparasites in free-range backyard chickens, domestic pigeons ( Columba livia domestica) and turkeys of Kermanshah province, west of Iran. J Parasit Dis 40: 448-453.
Roy L, Dowling AP, Chauve CM, Lesna I, Sabelis MW, Buronfosse T (2009) Molecular phylogenetic assessment of host range in five Der-manyssus species. Exp Appl Acarol 48: 115-142.
Shaaya E, Ravid U, Paster N, Juven B, Zisman U, Pissarev V (1991) Fumigant toxicity of essential oils against four major stored-product insects. J Chem Ecol 17: 499-504.
Sokól R, Romaniuk K (2006) Attempt to use traps to combat Dermanyssus gallinae infestation Med Weter 62: 1202-1204.
Sokół R, Szkamelski A, Barski D (2008) Influence of light and darkness on the behaviour of Dermanyssus gallinae on layer farms. Pol J Vet Sci 11: 71-73.
Sommer D, Heffels-Redmann U, Köhler K, Lierz M, Kaleta EF (2016) Role of the Poultry Red Mite ( Demanyssus gallinae) in the transmission of avian influenza A virus. Tierarztl Prax Ausg G Grosstiere Nutztiere 44: 26-33.
Sparagano OA, George DR, Harrington DW, Giangaspero A (2014) Significance and control of the poultry red mite, Dermanyssus gallinae. Annu Rev Entomol 59: 447-466.
Sparagano OA, Khallaayoune K, Duvallet G, Nayak S, George D (2013) Comparing terpenes from plant essential oils as pesticides for the poultry red mite ( Dermanyssus gallinae). Transbound Emerg Dis 60 (Suppl 2): 150-153.
Sparagano OA, Pavlicevic A, Murano T, Camarda A, Sahibi H, Kilpinen O, Mul M, van Emous R, le Bouquin S, Hoel K, Cafiero MA (2009) Prevalence and key figures for the poultry red mite Dermanyssus gallinae infections in poultry farm systems. Exp Appl Acarol 48: 3-10.
Stešević D, Božović M, Tadić V, Rančić D, Stevanović ZD (2016) Plant-part anatomy related composition of essential oils and phenolic compounds in Chaerophyllum coloratum, a Balkan endemic species. Flora - Morphology, Distribution, Functional Ecology of Plants 220: 37-51.
Tabari MA, Rostami A, Khodashenas A, Maggi F, Petrelli R, Giordani C, Tapondjou LA, Papa F, Zuo Y, Cianfaglione K, Youssefi MR (2020) Acaricidal activity, mode of action, and persistent efficacy of selected essential oils on the poultry red mite ( Dermanyssus gallinae). Food Chem Toxicol 138: 111207.
Tabari MA, Youssefi MR, Benelli G (2017) Eco-friendly control of the poultry red mite, Dermanyssus gallinae (Dermanyssidae), using the α-thujone-rich essential oil of Artemisia sieberi (Asteraceae): toxic and repellent potential. Parasitol Res 116: 1545-1551.
Thind BB, Ford HL (2007) Assessment of susceptibility of the poultry red mite Dermanyssus gallinae (Acari: Dermanyssidae) to some acaricides using an adapted filter paper based bioassay. Vet Parasitol 144: 344-348.
Thompson GD, Dutton R, Sparks TC (2000) Spinosad – a case study: an example from a natural products disco very programme. Pest Manag Sci 56: 696-702.
Van Emous R (2005) Wage war against the red mite! Poultry Int 44: 26-33.
Van Emous R (2017) Verwachtte schade bloedluis 21 miljoen euro. Pluimveeweb.nl. https://www.pluimveeweb.nl//artikelen/2017/01/schade-bloedluis-21-miljoen-euro/. [Accesed Jul 26 2021].
Wójcik AR, Grygon-Franckiewicz B, Żbikowska E, Wasielewski L (2000) Invasion of Dermanyssus gallinae (De Geer, 1778) in poultry farms in the Torun region. Wiad Parazytol 46: 511-515.
Zdybel J, Karamon J, Cencek T (2011) In Vitro effectiveness Of Selected Acaricides Against Red Poultry Mites ( Dermanyssus gallinae, De Geer, 1778) Isolated From Laying Hen Battery Cage Farms Localised In Different Regions Of Poland. Bull Vet Inst Pulawy 55: 411-416.
Go to article

Authors and Affiliations

M. Roczeń-Karczmarz
1
M. Demkowska-Kutrzepa
1
J. Zdybel
2
K. Szczepaniak
1
M. Studzińska
1
K. Tomczuk
1

  1. Department of Parasitology and Invasive Diseases, Faculty of Veterinary Medicine, University of Life Sciences, Akademicka 12, 20-033 Lublin, Poland
  2. Department of Parasitology and Invasive Diseases, National Veterinary Research Institute in Puławy, Al. Partyzantów 57, 24-100, Puławy, Poland
Download PDF Download RIS Download Bibtex

Abstract

This article deals with the analysis of the fractal dimension of streamers propagating in mineral oil, under lightning impulse voltage, using the box counting method; the method and technique of calculation are described therein. In the considered experimental conditions, the average velocities of recorded streamers are of 2.4 km/s and 1.8 km/s for positive and negative streamers, respectively; these velocities correspond to the 2nd mode of streamers propagation. It is shown that the streamers present the fractal dimension D ; and the higher D is the bushier are the streamers (i.e. with high branch density). The positive streamers can have higher D than the negative ones, if they are bushier.
Go to article

Bibliography

[1] Abu Shehab W.F., Ali S.A., Alsharari M.I., Lightning protection for power transformers of Aqaba Thermal Power Station, Archives of Electrical Engineering, vol. 69, no. 3, pp. 645–660 (2020), DOI: 10.24425/aee.2020.133923.
[2] Devins J.C., Rzad S.J., Schwabe R.J., Breakdown and pre-breakdown phenomena in liquids, Journal of Applied Physiscs, vol. 52, pp. 4531–4545 (1981), DOI: 10.1063/1.329327.
[3] Beroual A., Tobazeon R., Prebreakdown phenomena in liquid dielectrics, IEEE Transactions on Electrical Insulation, vol. 21, no. 4, pp. 613–627 (1986), DOI: 10.1109/TEI.1986.348967.
[4] Hebner R.E., Measurements of Electrical Breakdown in Liquids, in The Liquid State and its Electrical Properties, vol. B193, Plenum Press (1988).
[5] Badent A., Kist K., Schwabe R.J., Voltage Dependence of Prebreakdown Phenomena in Insulating Oil, Conference Record of the IEEE International Symposium on Electrical Insulation, Pittsburg, PA, USA, pp. 414–417 (1994).
[6] Beroual A., Zahn M., Badent A., Kist K., Schwabe A.J., Yamashita H., Yamazawa K., Danikas M., Chadband W.G., Torshin Y., Propagation and Structure of Streamers in Liquid Dielectrics, IEEE Electrical Insulation Magazine, vol. 14, no. 2, pp. 6–17 (1998), DOI: 10.1109/57.662781.
[7] Lesaint O., Prebreakdown phenomena in liquids: propagation “modes” and basic physical properties, Journal of Physics D-Applied Physics, vol. 49, no. 14, 22 (2016), DOI: 10.1088/0022- 3727/49/14/144001.
[8] Rozga P., Beroual A., Przybylek P., Jaroszewski M., Strzelecki K., A Review on Synthetic Ester Liquids for Transformer Applications, Energies, vol. 13, 6429 (2020), DOI: 10.3390/en13236429.
[9] CIGRE Group TB 856, Dielectric performance on insulating liquids for transformers,WG D1.70 TF3 (2021).
[10] Mandelbrot B.B., Fractals, Form, Chance and Dimension, Freeman, San Francisco, USA (1977), DOI: 10.1016/0012-8252(79)90075-8.
[11] Djemai Z., Beroual A., Fractal Dimension of Discharges Propagation on Insulating Interfaces, Archives of Electrical Engineering, vol. 3, pp. 249–254 (1998).
[12] Boroujeni F.M., Maleki A., Fractal Analysis of Noise Signals of Sampo and John Deere Combine Harvesters in Operational Conditions, Archives of Acoustics, vol. 44, no. 1, pp. 89–98 (2019), DOI: 10.24425/aoa.2019.126355.
[13] Ficker T., Electrostatic discharges and multi-fractal analysis of their Lichtenberg figures, Journal of Physiscs D: Applied Physics, vol. 32, pp. 219–226 (1999).
[14] Sawada Y., Ohta S., Yamazaki M.Y., Honjo H., Self-similarity and a phase transtion-like behaviour of a random growing structure governed by a non-euilibrium parameter, Physics Review A, vol. 26, 3557 (1982), DOI: 10.1103/PhysRevA.26.3557.
[15] Niemeyer L., Pietronero L., Wiesmann H.J., Fractal dimension of dielectric breakdown, Physical Review Letters, vol. 33, pp. 1033–1036 (1984), DOI: 10.1103/PhysRevLett.52.1033.
[16] Wiesmann H.J., Zeller H.R.A., A fractal model of dielectric breakdown and prebreakdown in solid dielectrics, Journal of Applied Physics, vol. 60, pp. 1770–1773 (1986), DOI: 10.1063/1.337219.
[17] Fujimori S., Electric Discharge and Fractals, Japan Journal of Applied Physics, vol. 24, no. 9, pp 1198–1203 (1985).
[18] Kudo K., Fractal analysis of electrical trees, IEEE Transactions on Dielectrics and Electrical Insulation, vol. 5, no. 5, pp. 713–727 (1998), DOI: 10.1109/94.729694.
[19] Kebbabi L., Beroual A., Fractal analysis of creeping discharge patterns propagating at solid/liquid interfaces: Influence of the nature and geometry of solid insulators, Journal of Physics D: Applied Physics, vol. 39, pp. 177–183 (2006), DOI: 10.1088/0022-3727/39/1/026.
[20] Lichtenberg G.C., Nova methodo naturam ac motum fluidi electrici investigandi, Commentatio Prior, Novi Commentarti Soc. Reg. Sc. Gottingensis, vol. 8, pp. 168–180 (1778).
[21] Beroual A., Dang V-H., Fractal analysis of lightning impulse surface discharges propagating over pressboard immersed in mineral and vegetable oils, IEEE Transacions on Dielectrics and Electrical Insulation, vol. 20, pp. 1402–1408 (2013), DOI: 10.1109/TDEI.2013.6571462.
[22] Beroual A., Coulibaly M.-L., Relationship between the Fractal Dimension of Creeping Discharges Propagating at Solid/Gas Interfaces and the Characteristics Parameters of Interfaces, Interanational Review on Electrical Engineering, vol. 9, no. 2, pp. 460–465 (2014).
[23] Rozga P., Influenece of paper insulation on the prebrakdown phenomena in mineral oil under lightning impulse, IEEE Transactions on Dielectrics and Electrical Insulation, vol. 18, no. 3, pp. 720–727 (2011), DOI: 10.1109/TDEI.2011.5931058.
[24] Rozga P., Jayasree T., Mohan Rao U., Fofana I., Picher P., Prebreakdown and Breakdown Phenomena in Ester Dielectric Liquids, in Alternative Liquids Dielectrics for High Voltage Transformer Insulation Systems: Performance Analysis and Applications, Wiley-IEEE Press, pp. 147–183 (2021), DOI: 10.1002/9781119800194.ch6.
[25] Rozga P., Rapp K.J., Stanek M., Lightning Properties of Selected Insulating Synthetic Esters and Mineral Oil in Point-to-Sphere Electrode System, IEEE Transactions on Dielectrics and Electrical Insulation, vol. 25, pp. 1699–1705 (2018), DOI: 10.1109/TDEI.2018.007069.
[26] Lundgaard L.E., Linhjell D., Berg G., Streamer/leaders from a metallic particle between parallel plane electrodes in transformer oil, IEEE Transactions on Dielectrics and Electrical Insulation, vol. 8, pp. 1054–1063 (2001), DOI: 10.1109/94.971465.
Go to article

Authors and Affiliations

Viet-Hung Dang
1
ORCID: ORCID
Abderrahmane Beroual
2
ORCID: ORCID
Pawel Rozga
3
ORCID: ORCID

  1. Electric Power University, Vietnam
  2. University of Lyon, Ecole Centrale de Lyon, France
  3. Lodz University of Technology, Poland

This page uses 'cookies'. Learn more