Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 91
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

The first Mineral Policy in Poland was prepared in 1938. In that time The Mineral Policy was primarily dedicated to preparing Poland for a defensive war. The Central Geology Authority (CGA) was created in 1991. The main task of this Authority was preparation plans (annual and multiannual) of geological-exploration. The CGA’s activities were focused on enhancing the resource base of mineral deposits. As of 1985 the coordination of geological tasks is the main duty of the Chief Geologist of the country. In 1996 the Council of Ministers adopted a document called State policy in the field of mineral resources, prepared at the Ministry of Environmental Protection, Natural Resources and Forestry as well as the Ministry of Industry and Trade. In 2015 a wide public discussion about the need to develop a mineral raw materials policy, initiated by the publication of three analytical documents prepared by the Demos Foundation, Professor J. Hausner and the Ministry of the Environment took place. Milestones in the development of a national mineral raw materials policy was the establishment of the special government’s plenipotentiary as well as the inter-ministerial team for mineral raw materials policy. In 2018, The Mineral Raw Materials Policy was transferred for public consultation. This document is the first document that is so comprehensive and holistic from the point of view of national mineral security interests. The Mineral Raw Materials Policy is based on 9 substantial pillars among them: economical and legal basis of mineral sector activities, investment risk, geological prospection and exploration, utilization of mineral wastes.

Go to article

Authors and Affiliations

Krzysztof Szamałek
Download PDF Download RIS Download Bibtex

Abstract

The importance and the role of minerals in the economy of a country or the world is highlighted by the use of the following terms: scarce mineral, critical mineral, and strategic mineral. The validity of the raw material in the economic processes and knowledge about the sources of its acquisition, access barriers, and the shaping of prices on the domestic and international market allow the development of an action strategy. The strategy must take into account the objective of the action, time horizon, the kind of the instruments that need to be used, and the scope of international cooperation. The importance of the raw material for the country is not only the volume of turnover and volume of production obtained thanks to its application. There are also historical, cultural and social reasons for its importance. The authors present arguments for another meaning of the term – mineral criticality. They also point out the linguistic differences between the term “criticality” in Polish and English. They propose to consider water, medicinal raw materials, some rock resources and amber as critical raw materials for various reasons.
Go to article

Authors and Affiliations

Krzysztof Szamałek
1 2
ORCID: ORCID
Karol Zglinicki
2
ORCID: ORCID
Sławomir Mazurek
2
ORCID: ORCID

  1. University of Warsaw, Faculty of Geology Warszawa, Poland
  2. Polish Geological Institute – National Research Institute Warszawa, Poland
Keywords minerals mayenite
Download PDF Download RIS Download Bibtex

Abstract

Apart from the commonly known minerals, nature also provides certain very rare varieties discovered only relatively recently. Some, due to their unique physical characteristics, can be utilized in various industries, while others may be used as inspiration for developing new synthetic materials.

Go to article

Authors and Affiliations

Dorota Środek
Download PDF Download RIS Download Bibtex

Abstract

The presented article contains an analysis resulting from 10 years’ experience in the implementation of the POLVAL Code to mineral assets valuations carried out by Competent Valuators. It had been based on data of more than 100 performed valuations. First and foremost, challenges resulting from preferences given by various relevant regulations to the application of a market-based approach were identified. It was underlined that they prompt Valuators to compromise the quality of the database containing reference transactions. In the case of an income based approach, issues resulting from the adoption of estimates and subjective assumptions were discussed. It was indicated that this fact alone cannot create a valid argument to reject the results of such a valuation providing that they have been implemented in a coherent manner and uncertainty was reflected in the value of the applied discount rate. Separately recommended changes to the present version of the POLVAL Code were presented. In conclusion, a significant, positive role of the introduction of the POLVAL Code for the structuring processes of mineral asset valuation was indicated.

Go to article

Authors and Affiliations

Robert Uberman
Download PDF Download RIS Download Bibtex

Abstract

The observation of trends in the demand for minerals is of fundamental importance in the long- -term assessment of prospects for economic development in Poland.
From among 148 minerals analyzed, 42 minerals are indicated as key minerals for the country’s economy, of which 22 were recognized as deficit minerals. These minerals have been the subject of this paper.
For each of these minerals the forecasts of demand by the years 2030, 2040 and 2050 have been made taking the current trends in domestic economy and premises for the development of industries that are main users of these minerals into account. The most promising prospects for growth of domestic demand – with at least a two-fold increase by 2050 – have been determined for manganese dioxide, metallic: magnesium, nickel, silicon, as well as talc and steatite, while an increase by at least 50% have been anticipated for metallic aluminum, tin, metallic manganese, and elemental phosphorus. For natural gas and crude oil growing tendencies have also been predicted, but only by 2030. On the other hand, the most probable decline in domestic demand by 2050 may be foreseen for iron ores and concentrates, bauxite, metallic tungsten, magnesite and magnesia, as well as for crude oil and natural gas, especially after 2040.
It seems inevitable that the deficit in the foreign trade of minerals will continue to deepen in the coming years. By 2030 this will mainly result from the growing importation of crude oil and natural gas, but beyond – by 2050 – further deepening in the trade deficit will be related to the growing importation of many metals as well as of some industrial minerals. After 2040, the negative trade balance can be mitigated by a possible decrease in foreign deliveries of hydrocarbons and iron ores and concentrates.
Go to article

Bibliography


Galos et al. 2020 – Galos, K., Burkowicz, A., Czerw, H., Figarska-Warchoł, B., Gałaś, A., Guzik, K., Kamyk, J., Kot- -Niewiadomska, A., Lewicka, E. and Szlugaj, J. 2020. Assessment of current and future demand of the domestic economy for mineral raw materials in the perspective of 2025, 2030. 2040 and 2050 (Ocena obecnego oraz przyszłego zapotrzebowania gospodarki krajowej na surowce w perspektywie 2025, 2030, 2040 i 2050 roku). Commissioned by the PIG-PIB (unpublished typescript in Polish).

Galos, K. and Lewicka, E. 2016. Assessment of importance of non-energy mineral raw materials for the domestic economy in the years 2005–2014 (Ocena znaczenia surowców mineralnych nieenergetycznych dla gospodarki krajowej w latach 2005–2014). Zeszyty Naukowe IGSMiE PAN 92, pp. 7–36 (in Polish).

Galos et al. 2021 – Galos, K., Lewicka, E., Burkowicz, A., Guzik, K., Kot-Niewiadomska, A., Kamyk, J. and Szlugaj, J. 2021. Approach to identification and classification of the key, strategic and critical minerals important for the mineral security of Poland. Resources Policy 70, pp. 101900–101913.

Galos, K. and Smakowski, T. 2014. Preliminary proposal of methodology of identification of key minerals for the Polish economy (Wstępna propozycja metodyki identyfikacji surowców kluczowych dla polskiej gospodarki). Zeszyty Naukowe IGSMiE PAN 88, pp. 59–79 (in Polish).

Galos, K. and Szamałek, K. 2011. Assessment of the non-energy minerals security of Poland (Ocena bezpieczeństwa surowcowego Polski w zakresie surowców nieenergetycznych). Zeszyty Naukowe IGSMiE PAN 81, pp. 37–58 (in Polish).

Kulczycka et al. 2016 – Kulczycka, J., Pietrzyk-Sokulska, E., Koneczna, R., Galos, K. and Lewicka, E. 2016. Key minerals for the Polish economy (Surowce kluczowe dla polskiej gospodarki) Kraków: MERRI PAS, 164 pp. (in Polish).

Lewicka, E. and Burkowicz, A. 2018. Assessing current state of coverage the mineral raw materials demand of the domestic economy (Ocena obecnego stanu pokrycia potrzeb surowcowych gospodarki krajowej). Przegląd Geologiczny 66(3), pp. 144–152 (in Polish).

Lewicka et al. 2021 – Lewicka, E., Guzik, K. and Galos, K. 2021. On the possibilities of critical raw materials production from the EU’s primary sources. Resources 10(5), pp. 50–71.

Ministry of Climate and Environment 2021. Mineral Policy of Poland. Project from 6 April 2021 (Polityka surowcowa państwa. Projekt z 6 kwietnia 2021 r.), Warszawa (in Polish).

Nieć et al. 2014 – Nieć, M., Galos, K. and Szamałek, K. 2014. Main challenges of mineral resources policy of Poland. Resources Policy 42, pp. 93–103.

Radwanek-Bąk, B. 2016. Designation of key raw materials for the Polish economy (Określenie surowców kluczowych dla polskiej gospodarki). Zeszyty Naukowe IGSMiE PAN 96, pp. 241–254 (in Polish).

Radwanek-Bąk et al. 2018 – Radwanek-Bąk, B., Galos, K. and Nieć, M. 2018. Key, strategic and critical minerals for the Polish economy (Surowce kluczowe, strategiczne i krytyczne dla polskiej gospodarki). Przegląd Geologiczny 66(3), pp. 153–159 (in Polish).

Smakowski et al. 2015 – Smakowski, T., Galos, K. and Lewicka, E. eds. 2015. Balance of the mineral economy of Poland and the world 2013 (Bilans gospodarki surowcami mineralnymi Polski i świata 2013). Warszawa: PIG-PIB, 1169 pp. (in Polish).

Statistics Poland (GUS). Statistics of the production and foreign trade (as well as selected data on consumption) of mineral raw materials in Poland in the years 2000–2018.

Szuflicki et al. 2021 – Szuflicki, M., Malon, A. and Tymiński, M. eds. 2021. Balance of mineral raw materials deposits in Poland as of 31 XII 2020 (Bilans zasobów złóż kopalin w Polsce wg stanu na 31 XII 2020 r.). Warszawa: PIG-PIB, 508 pp. (in Polish).
Go to article

Authors and Affiliations

Krzysztof Galos
1
ORCID: ORCID
Ewa Danuta Lewicka
1
ORCID: ORCID
Jarosław Kamyk
1
ORCID: ORCID
Jarosław Szlugaj
1
ORCID: ORCID
Hubert Czerw
1
ORCID: ORCID
Anna Burkowicz
1
ORCID: ORCID
Alicja Kot-Niewiadomska
1
ORCID: ORCID
Katarzyna Guzik
1
ORCID: ORCID

  1. Mineral and Energy Economy Research Institute, Polish Academy of Sciences, Kraków, Poland
Download PDF Download RIS Download Bibtex

Abstract

The article characterizes geological formations occurring in the Polish lignite deposits having the characteristics of raw materials, i.e. accompanying minerals, giving their location, quality characteristics, estimated resources and potential applications. Attention has also been paid to the economic suitability, e.g. in infrastructure works and for the reclamation of many geological formations found in the overburden, classified as so-called earth or rock mass. There are also raw materials of sorption properties representing a huge potential source of minerals valuable for the economy and environmental protection. This refers to e.g.: beidellite clays from Bełchatów, Poznań clays from the region of Konin and Adamów, lacustrine chalk from Bełchatów, as well as Mesozoic limestone from the lignite bedding in Bełchatów. The reasons for the unsatisfactory use of accompanying minerals have been given. The authors described the methods used in the mining operation and processing of associated minerals, also applicable in Poland, as the legal basis for the extraction of these minerals and the economic and financial conditions. They stressed the need to protect mined not associated minerals used by the construction of anthropogenic deposits. This activity primarily requires regulating the legal status of these deposits and the development and application of an economic and financial system that stimulates the economy of these minerals. In summary, the necessary actions were taken to increase the use of the accompanying minerals and their contribution to the balance of mineral resources in the country.

Go to article

Authors and Affiliations

Tadeusz Ratajczak
Ryszard Uberman
Download PDF Download RIS Download Bibtex

Abstract

An importance of secondary mineral raw materials sources for economy was demonstrated as well as sources of its acquirement were outlined. Various aspects of waste use in economy were discussed, underlining importance of waste removal for improvement of environment. A related legal framework in Poland and European Union was outlined. Results of already carried works in research and stocktaking of mineral waste accumulations in Poland were reminded. Legal procedures aiming at exploitation of mineral waste deposits formally defined and similar facilities falling outside definition of mineral waste deposits were discussed. It was evidenced that a gap in the legal framework exists, regarding particularity of waste acquirement from anthropogenic mineral deposits. Consequently, a need to require a preparation of equivalent of a resource report, feasibility study and a plan defining exploitation and conversion modes for material lifted from waste accumulations was demonstrated.
For the sake of a clear terminology applied it was recommended to incorporate terms of “anthropogenic mineral resources” and “anthropogenic mineral deposit” as an appropriate adjustment to the existing regulation. A need to intensify stocktaking efforts on mineral waste accumulations in Poland was emphasized. It was also suggested that its results should be recognized in the Balance of Mineral Resources and State Resource Policy.
In summary a recommended legal framework to regulate acquirement of mineral waste, recognizing particularities of such processes, was presented.
Go to article

Bibliography

Act 1980. Act of January 31, 1980 on Environmental Protection and Formation. (Ustawa z dnia 31 stycznia 1980 r. o ochronie i kształtowaniu środowiska.) (Journal of Laws 1994. 49.196 as amended) (in Polish).

Act 1991. Act of March 9, 1991 on Amendments to the Mining Law (Ustawa z dnia 9 marca 1991 r. o zmianie Prawa górniczego) (Journal of Laws 1991.31.128) (in Polish).

Act 1997. Act of June 27, 1997 on Waste (Ustawa z dnia 27 czerwca 1997 r. o odpadach) (Journal of Laws 1997.96.592) (in Polish).

Act 2001. The Act on Waste of April 27, 2001 (Ustawa z dnia 27 kwietnia 2001 r. o odpadach) (Journal of Laws 2001.62.628) (in Polish).

Act 2008. Act of July 10, 2008 on Mineral Waste (Ustawa z dnia 10 lipca 2008 r. o odpadach wydobywczych) (Journal of Laws 2008. 138. 865) (in Polish).

Act 2012. Act of December 14, 2012 on Waste (Ustawa z dnia 14 grudnia 2012 r. o odpadach) (Journal of Laws 2013. 21) (in Polish). Act 2021.

Act of April 27, 2021 on Waste (Ustawa z dnia 27 kwietnia 2021 r. o odpadach) (Journal of Laws 2021. 62.628) (in Polish). GML 1994.

Act of February 4, 1994 Geological and Mining Law (Ustawa z dnia 4 lutego 1994 r. Prawo geologiczne i górnicze) (Journal of Laws 1994.27.96) (in Polish). GML 2011.

Act of June 9, 2011, Geological and Mining Law (Ustawa z dnia 9 czerwca 2011 r. Prawo geologiczne i górnicze) (Journal of Laws 2011.63.981, as amended) (in Polish).

ML 1953. Decree of May 6, 1953. Mining Law (Dekret z 6 maja 1953 r. Prawo górnicze) (Journal of Laws 1953.29.113) (in Polish).

Nieć, M. ed. 2002. Rules Documenting Mineral Resources (Zasady dokumentowania złóż kopalin stałych). Warszawa: Ministerstwo Środowiska, Departament Geologii i Koncesji Geologicznych, Komisja Zasobów Kopalin (in Polish).

Nieć et al. 2018 – Nieć, M., Uberman, R. and Galos, K. 2018. Clastic sedimentary anthropogenic mineral deposits (Okruchowe antropogeniczne złoża kopalin). Górnictwo Odkrywkowe 3, pp. 31–37 (in Polish).

Pietrzyk-Sokulska et al 2018 – Pietrzyk-Sokulska, E., Radwanek-Bąk, B. and Kulczycka, J. 2018. Secondary mineral resources: problems of nomenclature and classification in connection with the implementation of the circular economy (Mineralne surowce wtórne – problemy polskiego nazewnictwa i klasyfikacji w związku z realizacją gospodarki w obiegu zamkniętym). Przegląd Geologiczny 3, pp. 160–165 (in Polish).

POLVAL 2021. Polish Code for Valuation of Mineral Assets. Kraków: PSWZK (in Polish, in print).

Rules on Documenting Mineral Resources 2002. Warszawa: Ministry of Environment Protection.

Salminen et al. 2021 – Salminen, J., Garbarino, E., Orveillon, G., Saveyn, H., Mateos Aquilino, V., Llorens Gonzalez, T., Garcia Polonio, F., Horckmans, L., D`hugues, P., Balomenos, E., Dino, G., De La Feld, M., Madai, F., Faldessy, J., Mucsi, G., Gombkoto‘, I. and Calleja, I. 2021. Recovery of critical and other raw materials from mining waste and landfills. EUR 29744 EN. Publications Office of the European Union, Luxembourg, 2019, DOI: 10.2760/174367, JRC116131.

Strategy 2016. Strategy for responsible development (Strategia na rzecz odpowiedzialnego rozwoju). [Online] https://www.gov.pl/web/fundusze-regiony/informacje-o-strategii-na-rzecz-odpowiedzialnego-rozwoju [Accessed: 2021-08-04] (in Polish).

Suppes, R. and Heuss-Aßbichler, S. 2021. How to Identify Potentials and Barriers of Raw Materials Recovery from Tailings? Part I: A UNFC-Compliant Screening Approach for Site Selection. Resources 10(3), 26. DOI: 10.3390/resources10030026.

Szczęśniak, H. 1990. Hazards to natural environment resulting from accumulated mineral waste (Zagrożenia środowiska przyrodniczego w wyniku gromadzenia odpadów mineralnych). [In:] Rules for protection and formation of environment in areas with mineral deposits (Zasady ochrony i kształtowania środowiska przyrodniczego na obszarach złóż kopalin). Vol. 18. Warszawa: Szkoła Główna Gospodarstwa Wiejskiego – Akademia Rolnicza w Warszawie (in Polish).

Uberman, Ry. 2017. Accompanying minerals in lignite deposits. Volume II. Legal, economic and mining aspects of the development of accompanying minerals (Kopaliny towarzyszące w złożach węgla brunatnego. Tom II. Prawno – ekonomiczne oraz górnicze aspekty zagospodarowania kopalin towarzyszących). Kraków: MEERI PAS, pp. 128 (in Polish).

Uberman, Ry. 2021. Mineral waste in light of the provisions of the Act on waste, the Act on extractive waste, and the Geological and mining law. Gospodarka Surowcami Mineralnymi – Mineral Resources Management 37(1), pp. 117–140.

Winterstetter et al 2021 – Winterstetter, A., Heuss-Assbichler, S., Stegemann, J., Kral, U., Wäger, P., Osmani, M. and Rechberger, H. 2021. The role of anthropogenic resource classification in supporting the transition to a circular economy. Journal of Cleaner Production 297. DOI: 10.1016/j.jclepro.2021.126753.
Go to article

Authors and Affiliations

Ryszard Uberman
1
ORCID: ORCID

  1. Mineral and Energy Economy Research Institute of the Polish Academy of Sciences, Kraków, Poland
Download PDF Download RIS Download Bibtex

Abstract

The earliest studies of the Moon consisted of observations from Earth and meteorites containing lunar material. As technology progressed, the observations were made using remote sensing techniques. The next stage of the Moon reconnaissance consisted of unmanned flights, and later manned flights, with the help of which, in-situ tests were performed. The obtained materials enable the formulation of conclusions both about the geological structure and the mineral resources of the moon. The latest maps provided by the United States Geological Survey (USGS) and NASA Planetary Data System (PDS) enable a detailed analysis of the geological structure of the moon. Since they are available in shapefile format for QGIS and ArcGIS software, they can be freely modified and processed. On the basis of these, it is possible to analyze the complexity of the geological structure of the moon, especially with regard to the structure of its substrate and the surface covered with craters. Data obtained from the observation of the Moon with the use of research satellites and research carried out during landings related to the collection of samples enabled the formulation of conclusions about the raw materials present there. These raw materials are related to the surface layer of the so-called regolith, the recognition of which is relatively good because it is based not only on remote studies but also on the basis of collected samples. Additionally, there are indications of the possible presence of mineral resources related to the substrate, but its recognition is relatively poor because it is based on remote and geophysical surveys. The presented analysis shows that the Moon has such minerals as rare earth elements (REE) and Th and U found in the KREEP area. Fe and Ti are found to be in basaltic lava flows occurring in the mares and aluminum, silicon and Helium-3 occur in the regolith.
Go to article

Authors and Affiliations

Jacek Misiak
1
ORCID: ORCID

  1. AGH University of Science and Technology, Faculty of Geology, Geophysics and Environment Protection, Kraków, Poland
Download PDF Download RIS Download Bibtex

Abstract

Earth is filled with a myriad of minerals and rocks that charm us with their beauty and diversity. They usually take the form of solids or mineral components dissolved in water.
Go to article

Authors and Affiliations

Agnieszka Gałuszka
Zdzisław M. Migaszewski
Download PDF Download RIS Download Bibtex

Abstract

The functioning of European economies and societies requires a stable and sustainable supply of mineral resources. For 10 years now EU has been developing raw materials initiative to secure European minerals supply. In many cases, areas with known or hypothetic mineral resources, are not sufficiently valued by society and authorities, remain unprotected and face competing land uses with the risk of becoming sterilized. MINATURA 2020 project was born out of a need to develop a harmonised framework which allow a common way of identifying “mineral deposits of public importance” (MDoPI) and their safeguarding via land use planning. The project has left a useful set of guidelines and proposals how to advance on the creation of a European network of MDoPIs to avoid sterilization of “deposits worth safeguarding”.

In Poland, the need for legal protection of mineral deposits has been discussed intensively in recent years. Various proposals aimed at better system of mineral deposits safeguarding, especially those which should be recognized as of public importance, have been proposed. However, until now only a few coal deposits were recognized as strategic. Currently, the Polish National Mineral Policy is under preparation. Its overriding objective is to provide access to the necessary minerals, also in the longterm perspective. It assumes among others activities aimed at protection of mineral deposits regarding land use planning system.

Paper presents scope and general results of MINATURA2020 project, with details on MINATURA2020 methodology implementation in Poland, Project of the Polish National Mineral Policy with its objectives and key pillars, position of MDoPIs in this Project, and – finally – expected future steps related to MDoPI safeguarding in EU and in Poland.

Go to article

Authors and Affiliations

Krzysztof Galos
ORCID: ORCID
Günter Tiess
Alicja Kot-Niewiadomska
ORCID: ORCID
Diego Murguia
Blazena Wertichová
Download PDF Download RIS Download Bibtex

Abstract

During the geological prospecting works conducted in 2013 on Bangka Island (Indonesia), high monazite content was identified in the wastes produced during processing of cassiterite deposits. Monazite, among 250 known minerals containing REE , is one of the most important minerals as primary source of REE .The monazite content in this waste is up to 90.60%. The phase composition of the investigated tailing proves that the sources of minerals accompanying the placer sediments tin mineralization are granitoids. The tailing is composed of numerous ore minerals, including monazite, xenotime, zircon, cassiterite, malayaite, struverite, aeschynite-(Y), ilmenite, rutile, pseudorutile and anatase. Monazite grains belong to the group of cerium monazite. Its grains are characterized by high content of Ce2O3 27.12–33.50 w t.%, La2O3 up to 15.46 w t.%, Nd2O3 up to 12.87%. The total REE 2O3 + Y content ranges from 58.18 to 65.90 wt.%. Monazite grains observations (SEM -BSE) revealed the presence of porous zones filled with fine phases of minerals with U and Th content. The radiation intensity of 232Th is ATh = 340 ± 10 Bq and 238AU = 114 ± 2 Bq. High content of monazite and other REE minerals indicates that tailing is a very rich, potential source of REE s, although the presence of radioactive elements at the moment is a technological obstacle in their processing and use. The utilization of monazite bearing waste in the Indonesian Islands can be an important factor for development and economic activation of this region and an example of the good practice of circular economy rules.

Go to article

Authors and Affiliations

Karol Zglinicki
ORCID: ORCID
Krzysztof Szamałek
ORCID: ORCID
Gustaw Konopka
Download PDF Download RIS Download Bibtex

Abstract

“Mineral deposit model”, “deposit modelling” are the terms commonly used, although imprecise. This is often identified as the application of computerized methods to the elaboration and presentation of geological information, in particular for the mining design. Deposit modelling is the mode of presentation of deposit features, which in the meaning of the authors of such presentation, describes the deposit features between the points of observations as best as possible. Deposit modelling has a long history (XVI-XVII centuries), however such a term was not used. Varied methods of cartographic presentation of deposits and their features were proposed. The progress in the presentation of the deposit in space using isolines maps has led to the separation of methods of deposits geometrisation. Over time, a simple mathematical statistics method was used to describe the deposit parameters, followed by geostatistical methods. Some of them were however not commonly used as too troublesome. The computer based approach to the presentation of geological data has an unquestionable value but is accompanied by the possibility of inappropriate formalized and erroneous interpretations and a presentation as to whether the basic rules of geological knowledge were neglected. Deposits modeling is a conceptual task and cannot be fully automated.

Go to article

Authors and Affiliations

Edyta Sermet
Jerzy Górecki
Marek Nieć
Download PDF Download RIS Download Bibtex

Abstract

Investigations of n-dodecane used in flotation of copper ore from the Legnica-Glogow Copper Basin (LGOM) were presented in the paper. The aim of the work was estimation of influence of nonpolar reagent's on the results of copper ore flotation. Two series of flotation tests were conducted. The first series - flotation experiments with standard flotation with xanthate collector only (KEtX), were compared with the second series: flotation experiments with n-dodecane addition (C12) in the first stage and then xanthate addition (KEtX). n-dodecane was used in form of aqueous emulsion and frother was aqueous solution of \alfa-terpincol. Flotation results showed that a part of copper minerals float with n-dodecane, and the rest of them is recovered using xanthate collector. The best results were obtained for the first series (with xanthate only). These flotation results were compared with the results of copper sulphide ores flotation with n-heptane addition. It was found that with the doses reagent used, n-heptane has a higher selectivity in comparison with n-dodecane. In the presence of various doses of n-heptane, tested material enriched better in organic carbon carriers than in the copper minerals.

Go to article

Authors and Affiliations

Alicja Bakalarz
Download PDF Download RIS Download Bibtex

Abstract

The research was carried out on two different industrial wastes deposited on the premises of a chemical plant: used graphite electrode after electrolysis of brine applying the mercury-cathode method and coal catalyst past the usage period after the synthesis of vinyl chloride. The need for utilization of the waste necessitated development of a fast and reliable procedure for mercury determination. We have found procedures for mineralization of coal samples and determination of small concentrations of mercury by the cold vapour of atomic absorption spectrometry (CV AAS) in the available literature. Six procedures for passing mercury from the examined waste into solutions were tested, and mercury was assayed using the titration method of Wickbold and CV AAS. The results were evaluated statistically. It has been found that four ways to mineralize the examined industrial waste samples can be used.
Go to article

Authors and Affiliations

Jerzy Ciba
Joanna Kluczka
Maria Zolotajkin
Download PDF Download RIS Download Bibtex

Abstract

The main objective of this study was to assess the concentration of various minerals (Ca, P, Mg, Cu, Zn, Fe) in the blood of sheep, followed by biochemical analysis in order to reveal possible associations of season and breed. The study was conducted by sampling four herds: Suffolk (n=20), Merino (n=20), Lithuanian blackhead (n=20) and Charolaise (n=7). The first blood collection was conducted in April and the last one was performed in February. The highest level of Ca was estimated in Suffolk ewes, lowest (12.61%) in Merino breed; the highest Mg content was found in Lithuanian blackhead breed, lowest (5.26%) in Charolaise; highest P content was determined in Merino, lowest (24.18%) in Suffolk breed (p<0.05). Evalua- tion of the biochemical parameters during different seasons showed a possible environmental effect on the health of the animals. The difference among minerals content showed the highest level in Ca, Mg, Fe in the autumn, P - in the summer, Cu and Zn - in the winter. The lowest differences between seasons were observed in content of Mg (1.24-4.03% from total average of all seasons) and Ca (0.59-8.18%), the highest – in Cu (2.52-18.36 %) and Zn (4.33-24.33%) (p<0.05). The significance of this work is the possible use of the data in the prevention of metabolic and production diseases.

Go to article

Authors and Affiliations

J. Autukaitė
I. Poškienė
V. Juozaitienė
R. Undzėnaitė
R. Antanaitis
H. Žilinskas
Download PDF Download RIS Download Bibtex

Abstract

Twelve mineral elements and total ash were examined in regard to the possible use as the estimators of digestibility of natural food in Antarctic seals. Four of them: phosphorus, calcium, copper and zinc have proved to give most reliable results. The estimated total dry mass and organic matter digestibilities of fish food in Weddell seals (Leptonychotes weddelli (Lesson)) averaged 82 and 91%, while the corresponding values for krill eaten by crabeaters (Lobodon carcinophagus (Hombron and Jaequinot)) and leopard seals (Hydrourga leptonyx (Blainville)) reached approximately 87 and 91%, respectively.

Go to article

Authors and Affiliations

January Weiner
Michał Woyciechowski
Jan Zieliński
Download PDF Download RIS Download Bibtex

Abstract

In the Motongkad prospect, East Bolaang Mongondow Regency, North Sulawesi Province, Indonesia, an epithermal gold mineralization occurred, hosted in andesitic-basaltic breccia, lava and tuff members the middle Miocene volcanic rock (Tmv). The Volcanic Rock is intruded by andesite dikes and contains fine quartz veins. Gold, silver, and pyrite found in the quartz veins.
This study consists of two main stages, field works and laboratory works. The field works were performed in whole area of the Motongkad prospect, where fresh and altered rock and mineralization samples were collected randomly, selectively, and systematically from outcrops as well as from a test pit. The laboratory works include petrography, X-ray diffraction (XRD), ore microscopy, and chemical analysis using the atomic absorption spectrometry (AAS) method.
The study area is arranged by three lithology units. Stratigraphically, the units are andesite rhyolite and tuff. The hydrothermal alteration in the study area are classified in five zones, namely: quartzsericite, quartz-sericite-clay, quartz-calcite-sericite-chlorite, quartz-calcite-sericite, and quartz-calcite- kaolinite. Motongkad prospect mineralization consists of two types, namely the vein type and the disseminated type. The ore minerals found in the Motongkad prospect are gold, pyrite, chalcopyrite, sphalerite, covellite, chalcocite, bornite and tennantite. We conclude that gold mineralization and its associated minerals in the Motongkad prospect are hydrothermal mineralization with epithermal characteristics.
Based on the results of mineragraphic analysis, there are two types of gold-bearing minerals found, namely native gold minerals and electrum, which are generally hosted by pyrite. Based on the distribution map of alteration and mineralization that has been made, it is recommended that the company wish to conduct mining with the highest gold content in the quartz-sericite and quartz-sericite- clay alteration zones, which are in the range of 0.83–1.07 g/t.
Go to article

Authors and Affiliations

Muhmammad Adam
1
Asri Jaya
1
Musri Mawaleda
1
Irzal Nur
2

  1. Earth and Environmental Technology Study Program, Geological Engineering Department,Faculty of Engineering, Hasanuddin University, Gowa, Indonesia
  2. Mining Engineering Department, Faculty of Engineering, Hasanuddin University, Gowa, Indonesia
Download PDF Download RIS Download Bibtex

Abstract

The article concerns issues related to need of the introduction of protection prognostic areas, prospective resources pursuant to the new regulations of integrated development and space management in Poland. The article discuss the issues of actual and crucial documents and it also contains some critic and detailed analysis of the documents such as: the Responsible Development Strategy (SOR), Integrated National Development Strategy (ZSRK), Poland Integrated Development Strategy (SZRP). Author also analyzes whether the level of the implementation with the provisions motioned above is compliant with work in the committees reviewing issues in accordance with the work of the inter-ministerial teams for the updating and monitoring the strategy of development, set up at the Coordination Committee for Development Policy. The article indicates, among others, the increase of the legislative risk for the geological-mining or energy industry, the commodity sector. The risk may affect the crucial matters for the industry (functional areas, ICPs, the basis of their recognition in planning documents – taken into consideration as an element in the integrated management system of development). After all the analysis of the current provision, the article contains the summary with the main conclusions.

Go to article

Authors and Affiliations

Jan Stefanowicz
Download PDF Download RIS Download Bibtex

Abstract

The article provides the external indications (both international and domestic) showing how important creating an appropriate mineral policy of the country is, especially in the context of mineral security. The current mandatory legal regulations referring to mineral policy and mineral security of the country were presented and discussed against this background, starting with provisions of the Constitution of the Republic of Poland, through the Strategy for Sustainable Development, Spatial Management Concept of the Country 2030 together with Action Plan, Strategy for Energy Security and Environment – 2020 perspective, Geological and Mining Law and other legal acts and implementing provisions, Action Plan “Raw Materials for the Industry” announced by the Minister of Development, the Concept for Mineral Policy presented by the Government Plenipotentiary for the Mineral Policy, and finally – project of the Urban and Building Code in the area of spatial development. In the case of documents being in the course of the proceedings, the current state of working on them is presented, also in the context of particular projected legal solutions for future regulations. The author indicates and justifies the need of accelerating the work and taking actions to prevent the currently appearing phenomena that may impede the execution of the raw materials policy and the protection of key raw materials in the future.

Go to article

Authors and Affiliations

Jan A. Stefanowicz
Download PDF Download RIS Download Bibtex

Abstract

The domestic (Polish) lignite deposits, including the Bełchatów deposit, are classified as multi- mineral and multi-raw materials. Ensuring the possibility of using a significant part of all minerals present in this type of deposits should be a matter of priority for mines. Over several dozen years of operation, the Bełchatów Lignite Mine, based on its own experience in documenting and exploiting both the main mineral and accompanying minerals, as well as rock mass components that are not solid minerals, this mine has developed a new approach to the problem of the comprehensive use of deposit resources. The content of the article is an attempt to answer the question: do the applicable laws guarantee a comprehensive and rational use of mineral deposits whose resources are non-renewable? On the example of the area of the Bełchatów lignite deposit, the comprehensive and rational use of mineral resources was analysed. It was indicated that the reasons for their use result from the lack of appropriate organizational, economic and financial solutions. Particular attention was paid to the need to modify the licensing procedures for prospecting, documenting and extracting minerals. It seems reasonable to introduce multi-resource concessions, which are an important element of the circular economy. Therefore, proposals were formulated regarding the introduction of additional legal regulations and instruments of an economic and financial nature. These would be able to guarantee the comprehensive and rational use of most mineral resources.
Go to article

Authors and Affiliations

Elżbieta Hycnar
1
ORCID: ORCID
Tadeusz Ratajczak
2
ORCID: ORCID
Ryszard Uberman
2
ORCID: ORCID

  1. AGH University of Kraków, Poland
  2. Mineral and Energy Economy Research Institute PAS, Kraków, Poland
Download PDF Download RIS Download Bibtex

Abstract

A systematic increase in the demand for mineral raw materials combined with the difficulty of obtaining them from primary sources, made it necessary to use secondary ones including mineral waste. The effectiveness of the management of mineral waste stored in landfills and from current production depends on many factors. The most important ones include the legal regulations of this activity and the technical and organizational determinants of deposit exploitation, processing, and refining of minerals.
The paper analyzes the current waste (including mining waste) management regulations. The technological discrepancies in these regulations, as well as missing or inaccurate classifications, were demonstrated. The interchangeable use of notions: mining/mine and extractive/extraction is a primary source of problems. It also has to be noted that accompanying and joint minerals are not defined in appropriate legislation. Attention was also paid to the omission of important issues in these regulations, e.g. product structure, construction of anthropogenic deposits, etc. It was emphasized and demonstrated with examples that the comprehensive and rational exploitation of mineral deposits, combined with processing and refining of mineral raw materials is an effective way of using mineral waste. The obtained results allowed for formulating proposals regarding legal provisions regulating waste management and the recommendation of technical and organizational solutions for the activities of mining, processing, and refining of mineral raw materials.
Go to article

Authors and Affiliations

Ryszard Uberman
1
ORCID: ORCID

  1. Mineral and Energy Economy Research Institute of the Polish Academy of Sciences, Kraków, Poland
Download PDF Download RIS Download Bibtex

Abstract

The Legnica deposit is one of the most prospective in the context of future lignite mining. Its extraction will be inseparable from the removal of the rocks of the overburden, the volume of which is very large. Due to the raw material properties, some of the rocks can be classified as accompanying minerals. The raw material identification of overburden sediments in the Legnica lignite deposit is insufficient. So far, they haven’t been the subject of detailed and comprehensive research to prove their usefulness. The article was a summary of the knowledge on this subject. The following should be included in the accompanying minerals: Quaternary sands and gravels, tertiary sands and clays (Poznan clays). They are present in two colour variants in the Legnica deposit - and fiery. The mineral composition of greenish-blue clays allows them to be included in illite-kaolinite- smectite varieties, in turn fiery clays as kaolinite-illite-smectite varieties. The tertiary clays are a very useful raw material for the production of building materials. In addition, they are potential mineral sorbents due to the nature of the association of clay minerals (occurrence of montmorillonite). They also show suitability for building waterproofing barriers. Quaternary gravels and sands, developed in the overburden Legnica deposit are differentiated raw materials. Some of them are raw materials for the construction industry. The glacial tills can be used as a component of ceramic mixtures. Tertiary sands can be used as a proppant material. The information on the raw material properties of these sediments will be one of the essential criteria for their treatment as accompanying minerals. Minerals accompanying those developed in the Legnica deposit should be exploited and deposited selectively. The creation of anthropogenic deposits accumulating these minerals will provide the possibility of their use for decades after the termination of operation.

Go to article

Authors and Affiliations

Tadeusz Ratajczak
Elżbieta Hycnar
Download PDF Download RIS Download Bibtex

Abstract

As of the spring of 2017, the HAŁDY Database is available on the Polish Geological Institute – NRI website. The geodatabase contains information and data on waste mineral raw materials collected on old heaps, industrial waste stock-piles and in post-mining settlers, from the Polish part of the Sudety Mountains. The article presents the types of data and information contained in the geodatabase and the methodology for their collection. As a result of four-year research works, field reconnaissance, archives and geological basic research, 445 objects of former mining and mineral processing were inventoried. There are 403 mine heaps, 16 industrial settlers, 23 stock-piles and 3 external dumps. These are mainly objects after coal mining and metal ores, including post-uranium. The greatest opportunities for the economic use of waste are associated with coal sludge accumulated in settlers of the liquidated Lower Silesian Coal Basin. The material from stone heaps after polymetallic, iron and fluorite ore mining is also easy to use. The issue of the economic use of post-flotation copper ore waste or the recovery of metals (including gold) from dumps of arsenic mining remains open. The limitation here is the efficiency of metal recovery technologies and environmental restrictions. Some of the objects are located in protected areas, which excludes the possibility of waste management. Some stock-piles and heaps should be carefully reclaimed and covered by environmental monitoring, due to their harmful impact on environmental components.

Go to article

Authors and Affiliations

Cezary Sroga
Stanisław Z. Mikulski
Wojciech Bobiński
Marek Adamski

This page uses 'cookies'. Learn more