Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 3
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

The paper presents application of guidance system for small, smart mortar missile. The presented control system is simple and inexpensive. It is based on a set of one time used impulse control engines and linear coordinator rotating with controlled object. Engines are mounted around the missile. There are no movable devices on the projectile board. The correcting impulses from rocket engines are perpendicular to main symmetry axis of the flying object and influence directly the centre of gravity of the guided missile. In the paper, authors describe the whole control system of the missile. Particular attention is focused on seeker and control devices. Numerical analysis presents some cases of the missile controlled flights.

Go to article

Authors and Affiliations

Robert Głębocki
Ryszard Vogt
Download PDF Download RIS Download Bibtex

Abstract

The aim of the study described herein was to design, construct and test a demonstrator of a system to control the direction of the resultant thrust vector of a rocket motor to be used in short range anti-tank missiles with a mass of up to 15 kg. The novelty of the system is that the direction of the resultant thrust vector is manipulated by means of moveable jet vanes integrated with a moveable nozzle diffuser through telescopic connectors. The technology demonstrator was built using different materials and different manufacturing processes. The first versions were 3D printed from plastic materials. Minor modifications to the design were made at an early stage. The final version had the main components made of aluminum using CNC machining. The system, with and without jet vanes, was tested on a specially developed test rig equipped with a multi-axis sensor to measure forces and torques. The nozzle performance parameters measured and analyzed in this study were the components of the thrust vector, the moments and the effective vectoring angle. The findings show that the experimental data are in good agreement with the results of earlier simulations and that the demonstrator is fully operational.
Go to article

Authors and Affiliations

Łukasz Krzysztof Nocoń
1
ORCID: ORCID
Marta Grzyb
1
Piotr Szmidt
1
Łukasz Marian Nowakowski
2

  1. Kielce University of Technology, Department of Mechatronics and Armament Engineering, Faculty of Mechatronics and Mechanical Engineering,al. Tysia˛clecia Pan´stwa Polskiego 7, 25-314 Kielce, Poland
  2. Kielce University of Technology, Department of Mechanical Engineering and Metrology, Faculty of Mechatronics and Mechanical Engineering,al. Tysia˛clecia Pan´stwa Polskiego 7, 25-314 Kielce, Poland
Download PDF Download RIS Download Bibtex

Abstract

In this article the author makes an attempt to characterize the main factor – mobility – which is to be taken into consideration while designing the ground radar component (passive and active radars) of the Air Defense systems in order to enable them to operate on the contemporary battlefield. He presents the latest theoretical views on the relationship between the usage of anti-radiation missiles and the mobility of the passive and active radars as the key ability to protect them against such weapons. In particular the author emphasizes that the antiradiation missiles present nowadays the biggest threat for the effective Air Defense systems, which are today characterized by a high complexity degree. He also stresses the need to combine the radars, both passive and active, into one system allowing for the streamlining of their work parameters and thus ensuring their complex usage. The gaining of those capabilities shall guarantee that the parameters of the air surveillance radar area can be defined effectively.
Go to article

Authors and Affiliations

Stanisław Czeszejko
1

  1. General Command Polish Armed Forces, Warsaw, Poland

This page uses 'cookies'. Learn more