Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 6
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

In the years 1999-2001 occurrence of eriophyoid mites (Eriophyoidea) and spider mites (Tetranychidae) on wild grasses growing in Wielkopolska region was investigated. Seven species of eriophyoid mites and three of spider mites were found on 24 grass species. Eriophyoid mites infested 38% and spider mites 57% of all examined samples. The most frequent inhabited grass species by eriophyoid mites were Agropyron repens and Lolium perenne, while by spider mites Dactylis glomerata and Bromus mollis.
Go to article

Authors and Affiliations

Anna Skorupska
Jan Kozłowski
Download PDF Download RIS Download Bibtex

Abstract

Pest mites of the family Tetranychidae are commonly reported in several legumes. However, reports of their occurrence in lima beans are insipient, especially in Brazil. The objective of this research was to record the occurrence of mites in lima bean plants and to describe their damage in this Fabaceae. Tetranychus neocaledonicus André and Mononychellus planki McGregor were found in lima bean plants, Phaseolus lunatus (Fabaceae or Leguminosae). The lima bean plants, when infested by these mites, initially exhibit small whitish spots in the leaflets, which with increasing population density rapidly evolve into chlorotic patches, followed by silvering, and may dry out and fall due to their overfeeding. The extent of the damage caused to lima bean plants and the adaptability of the mite to warm and dry conditions indicate that T. neocaledonicus has greater potential as a lima bean pest than M. planki in northeastern Brazil. This is the first record of these mites associated with P. lunatus.

Go to article

Authors and Affiliations

Antonio Vieira Gomes Neto
Paulo Roberto Ramalho Silva
Jayara Dayany Costa Silva
Mayara Fernandes dos Santos
José Wagner da Silva Melo
Solange Maria de França
Download PDF Download RIS Download Bibtex

Abstract

The mesostigmatid mite Vulgarogamasus immanis (Berlese, 1904) is reported in Svalbard for the first time. The gamasid mite community of Svalbard is amongst the best known of invertebrate groups of the archipelago due to recent revisions based on fresh sampling campaigns. Nonetheless, a hitherto unrecorded species of gamasid mite was recently found along the strandline in Barentsburg. This record brings the total gamasid mite inventory of Svalbard to 23 species. The current inventory of Svalbard is bedeviled with synonyms and misidentifications. Nevertheless, resolving these confusions and maintaining an accurate and updated species inventory is of prime importance in understanding the ecology of this region. Especially in a period of rapid environmental change.
Go to article

Authors and Affiliations

Dariusz J. Gwiazdowicz
Torstein Solhøy
Stephen J. Coulson
Natalia V. Lebedeva
Elena N. Melekhina
Download PDF Download RIS Download Bibtex

Abstract

It seems that essential oils can be a good ingredient in effective preparations against Dermanyssus gallinae. Dermanyssus affects animal health leading to financial losses and bird welfare issues. Collected mites were treated with various essential oils in four (20, 50, 80 and 100%) concentrations at a dose of 0.28 mg/cm2. The direct toxicity of the essential oils, mineral oil and spinosad to D. gallinae was tested in the laboratory. Eucalyptus oil was the most toxic essential oil in all concentrations to D. gallinae (87.6 - 97.6% mortality at all four concentrations), while geranium, pine and rosemary oils showed mortality rates of 14.2 - 68.2%. High mortality after 48 hours of contact was also recorded for the oil of cloves at 80% dilution (85.1% mortality), lavender 100% (94.2% mortality). Similarly, the thyme essential oil produced 83.5 - 93.2% mortality in three concentrations: 50, 80 and 100%. The mineral oil was the least effective oil against mites. Spinosad showed high effectiveness against D. gallinae.
Go to article

Bibliography


Anastas P, Kirchchoff M, Williamson T (1999) Green Chemistry awards: spinosad – a new natural product for insect control. Green Chem 1: G88.
Axtell RC (1999) Poultry integrated pest management: Status and future. Integr Pest Manag Rev 4: 53-73.
Beugnet F, Chauve C, Gauthey M, Beert L (1997) Resistance of the red poultry mite to pyrethroids in France. Vet Rec 140: 577-579.
Bobrek K, Gaweł A (2017) Invasion of Red Mite ( Dermanyssus gallinae) as a cause of foot self-mutilation in a laying hen flock. Pak Vet J 37: 242-244.
Bordin C, Alves DS, Alves LF, Oliveira MS, Ascari J, Scharf DR (2021) Fumigant activity of essential oils from Cinnamomum and Citrus spp. and pure compounds against Dermanyssus gallinae (De Geer) (Acari: Derma nyssidae) and toxicity toward the nontarget organ-ism Beauveria bassiana (Vuill.). Vet Parasitol 290: 109341.
Cernea LC, Şuteu E, Cernea M, Lefkaditis M, Cozma V (2006) Realization of an experimental model for in vitro testing of the acaricidal effect of the vegetal extracts. Rev Sci Parasitol 7: 35-40.
Chalchat JC, Ozcan MM, Dagdelden A, Akgul A (2007) Variability of essential oil composition of Echinophora tenuifolia subsp. sibthorpiana Tutin by harvest location and year and oil storage. Chem Nat Comp 43: 225-227.
Chauve C (1998) The poultry red mite Dermanyssus gallinae (De Geer 1778): current situation and future prospects for control. Vet Parasitol 79: 239-245.
Chen Z, van Mol W, Vanhecke M, Duchateau L, Claerebout E (2019) Acaricidal activity of plant-derived essential oil components against Psoroptes ovis in vitro and in vivo. Parasit Vectors 12: 425.
Chiasson H, Bélanger A, Bostanian N, Vincent C, Poliquin A (2001) Acaricidal properties of Artemisia absinthium and Tanacetum vulgare (Asteraceae) essential oils obtai ned by three methods of extraction. J Econ Entomol 94: 167-171.
Ciesielska J, Malusà E, Sas Paszt L (2011) “Plant protection products used in organic farming”. In: Ligocka T (ed) “Development of innova-tive technologies for ecological production of fruit plants”. PPHU “Graf-Sad”. Free copy co-financed by the European Union from the Euro-pean Regional Development Fund under the Operational Program Innovative Economy Contract N. UDA-POIG. 01.03.01-10-109/08-00.
Circella E, Pugliese N, Todisco G, Cafiero MA, Sparagano OA, Camarda A (2011) Chlamydia psittaci infection in canaries heavily infested by Dermanyssus gallinae. Exp Appl Acarol 55: 329-338.
Cosoroaba I (2001) Massive Dermanyssus gallinae invasion in battery-husbandry raised fowls. Revue Méd Vét 152: 89-96.
Di Palma A, Giangaspero A, Cafiero MA, Germinara GS (2012) A gallery of the key characters to ease identification of Dermanyssus gallinae (Acari: Gamasida: Dermanyssidae) and allow differentiation from Ornithonyssus sylviarum (Acari: Gamasida: Macro-nyssidae). Parasit Vectors 5: 104.
Entrekin DL, Oliver JH Jr (1982) Aggregation of the chicken mite, Dermanyssus gallinae (Acari: Dermanyssidae). J Med Entomol 19: 671-678.
Fiddes MD, Le Gresley S, Parsons DG, Epe C, Coles GC, Stafford KA (2005) Prevalence of the poultry red mite ( Dermanyssus gallinae) in England. Vet Rec 157: 233-235.
Flamini G, Cioni PL (2007) Seasonal variation of the chemical constituents of the essential oil of Santolina etrusca from Italy. Chem Biodivers 4: 1008-1019.
Gay M, Lempereur L, Francis F, Caparros Megido R (2020) Control of Dermanyssus gallinae (De Geer 1778) and other mites with volatile organic compounds, a review. Parasitology 147: 731­739.
George DR, Masic D, Sparagano OA, Guy JH (2009a) Variation in chemical composition and acaricidal activity against Dermanyssus gallinae of four eucalyptus essential oils. Exp Appl Acarol 48: 43-50.
George DR, Shiel RS, Appleby WG, Knox A, Guy JH (2010) In vitro and in vivo aca-ricidal activity and residual toxicity of spinosad to the poultry red mite, Dermanyssus gallinae. Vet Parasitol 173: 307-316.
George DR, Smith TJ, Shiel RS, Sparagano OA, Guy JH (2009b) Mode of action and variability in efficacy of plant essential oils showing toxicity against the poultry red mite, Dermanyssus gallinae. Vet Parasitol 161: 276-282.
George DR, Smith TJ, Sparagano OA, Guy JH (2008) The influence of ‘time since last blood meal’ on the toxicity of essential oils to the poultry red mite ( Dermanyssus gallinae). Vet Parasitol 155: 333-335.
Gharbi M, Sakly N, Darghouth MA (2013) Prevalence of Dermanyssus gallinae (Mesostigmata: Dermanyssidae) in industrial poultry farms in North-East Tunisia. Parasite 20: 41.
Guimarães JH, Tucci EC (1992) Evaluation of the efficiency of mineral oil in the control of Dermanyssus gallinae (De Geer, 1778) (Acari: Dermanyssidae), under field and laboratory conditions. Rev Bras Entomol 36: 859-862.
Hoffmann G (1987) Bird mites as burdens, disease generators and vectors in humans and livestock. Dtsch Tierarztl Wschr 95: 7-10.
Immediato D, Figueredo LA, Iatta R, Camarda A, Nogueira de Luna RL, Giangaspero A, Brandão-Filho SP, Otranto D, Cafarchia C (2016) Essential oils and Beauveria bassiana against Dermanyssus gallinae (Acari: Dermanyssidae): toward new natural acaricides. Vet Parasitol 229: 159-165.
Isman MB (1999) Pesticides based on plant essential oils. Pestic Outlook 10: 68-72.
Isman MB (2008) Botanical insecticides: for richer, for poorer. Pest Manag Sci 64: 8-11.
Jilani G, Saxena R C, Rueda B P (1988) Repellent and growth-inhibiting effects of turmeric oil, sweetflag oil, neem oil and Margosan-O on red flour beetle (Coleoptera: Tenebrionidae). J Econ Entomol 81: 1226-1230.
Kim SI, Na YE, Yi JH, Kim BS, Ahn YJ (2007) Contact and fumigant toxicity of oriental medicinal plant extracts against Dermanyssus gallinae (Acari: Dermanyssidae). Vet Parasitol 145: 377-382.
Kim JR, Perumalsamy H, Lee JH, Ahn YJ, Lee YS, Lee SG (2016) Acaricidal activity of Asarum heterotropoides root-derived com-pounds and hydrodistillate constitutes toward Dermanyssus gallinae (Mesostigmata: Dermanyssidae). Exp Appl Acarol 68: 485-495.
Kim SI, Na YE, Yi JH, Kim BS, Ahn YJ (2007) Contact and fumigant toxicity of oriental medicinal plant extracts against Dermanyssus gallinae (Acari: Dermanyssidae). Vet Parasitol 145: 377-382.
Kim SI, Yi JH, Tak JH, Ahn YJ (2004) Acaricidal activity of plant essential oils against Dermanyssus gallinae (Acari: Dermanyssidae). Vet Parasitol 120: 297-304.
Koenraadt CJ, Dicke M (2010) The role of volatiles in aggregation and host-seeking of the haematophagous poultry red mite Dermanyssus gallinae (Acari: Dermanyssidae). Exp Appl Acarol 50: 191-199.
Kostyukovsky M, Rafaeli A, Gileadi C, Demchenko N, Shaaya E (2002) Activation of octopaminergic receptors by essential oilconstituents isolated from aromatic plants: Possible mode of action against insect pests. Pest Manag Sci 58: 1101-1106.
Kowalski A, Sokół R (2009) Influence of Dermanyssus gallinae (poultry red mite) invasion on the plasma levels of corticosterone, catecholamines and proteins in layer hens. Pol J Vet Sci 12: 231-235.
Lee SJ, Kim HK, Kim GH (2019) Toxicity and effects of essential oils and their components on Dermanyssus gallinae (Acari: Dermanyssidae). Exp Appl Acarol 78: 65-78.
Magdaş C, Cernea M, Baciu H, Şuteu E (2010) Acaricidal effect of eleven essential oils against the poultry red mite Dermanyssus galli-nae (Acari: Dermanyssidae). Sci Parasitol 11: 71-75.
Marangi M, Cafiero MA, Capelli G, Camarda A, Sparagano OA, Giangaspero A (2009) Evaluation of the poultry red mite, Dermanyssus gallinae (Acari: Dermanyssidae), susceptibility to some acaricides in field populations from Italy. Exp Appl Acarol 48: 11-18.
Martinez-Velazquez M, Castillo-Herrera GA, Rosario-Cruz R, Flores-Fernandez JM, Lopez-Ramirez J, Hernandez -Gutierrez R, Lu-go-Cervantes EC (2011) Acaricidal effect and chemical composition of essential oils extracted from Cuminum cyminum, Pimenta dioica and Ocimum basilicum against the cattle tick Rhipicephalus (Boophilus) microplus (Acari: Ixodidae). Parasitol Res 108: 481-487.
Maurer V, Perler E, Heckendorn F (2009) In vitro efficacies of oils, silicas and plant preparations against the poultry red mite Dermanyssus gallinae. Exp Appl Acarol 48: 31-41.
Meyer-Kühling B, Pfister K, Müller-Lindloff J, Heine J (2007) Field efficacy of phoxim 50% (ByeMite) against the poultry red mite Dermanyssus gallinae in battery cages stocked with laying hens. Vet Parasitol 147: 289-296.
Miresmailli S, Bradbury R, Isman MB (2006) Comparative toxicity of Rosmarinus officinalis L. essential oil and blends of its major constituents against Tetranychus urticae Koch (Acari: Tetranychidae) on two different host plants. Pest Manag Sci 62: 366-371.
Moreno PR, Lima ME, Sobral M, Young MC, Cordeiro I, Apel MA, Limberger RP, Henriques AT (2007) Essential oil composition of fruit colour varieties of Eugenia brasiliensis Lam. Sci Agric 64: 428-432.
Mul M, van Niekerk T, Chirico J, Maurer V, Kilpinen O, Sparagano O, Thind B, Zoons J, Moor D, Bell B, Gjevre AG, Chauve C (2009) Control methods for Dermanyssus gallinae in systems for laying hens: Results of an international seminar. World’s Poult Sci J 65: 589-600.
Muñoz-Bertomeu J, Sales E, Ros R, Arrillaga I, Segura J (2007) Up-regulation of an N-terminal truncated 3-hydroxy-3-methylglutaryl CoA reductase enhances production of essential oils and sterols in transgenic Lavandula latifolia. Plant Biotechnol J 5: 746-758.
Nechita IS, Poirel MT, Cozma V, Zenner L (2015) The repellent and persistent toxic effects of essential oils against the poultry red mite, Dermanyssus gallinae. Vet Parasitol 214: 348-352.
Negahban M, Moharramipour S, Sefidkon F (2007) Fumigant toxicity of essential oil from Artemisia sieberi Besser against three stored-product insects. J Stor Prod Res 43: 123-128.
Piskorski R, Ineichen S, Dorn S (2011) Ability of the Oriental Fruit Moth Grapholita molesta (Lepidoptera: Tortricidae) to Detoxify Juglone, the Main Secondary Metabolite of the Non-host Plant Walnut. J Chem Ecol 37: 1110-1116.
Prabuseenivasan S, Jayakumar M, Ignacimuthu S (2006) In vitro antibacterial activity of some plant essential oils. BMC Complement Altern Med 6: 39.
Raal A, Orav A, Arak E (2007) Composition of the essential oil of Salvia officinalis L. from various European countries. Nat Prod Res 21: 406-411.
Radsetoulalova I, Hubert J, Hampel D, Lichovnikova M (2020) Active components of essential oils as acaricides against Dermanyssus galli-nae. Br Poult Sci 61: 169-172.
Raele DA, Galante D, Pugliese N, La Salandra G, Lomuto M, Cafiero MA (2018) First report of Coxiella burnetii and Borrelia burgdorferi sensu lato in poultry red mites, Dermanyssus gallinae ( Mesostigmata, Acari) , related to urban outbreaks of dermati-tis in Italy. New Microbes New Infect 23: 103-109.
Rajabpour A, Mashhadi AR, Ghorbani MR (2018) Acaricidal and repellent properties of some plant extracts against poultry red mite, Dermanyssus gallinae (Mesostigmata: Dermanyssidae). Persian J Acarol 7: 85-91.
Rezaei F, Hashemnia M, Chalechale A, Seidi S, Gholizadeh M (2016) Prevalence of ectoparasites in free-range backyard chickens, domestic pigeons ( Columba livia domestica) and turkeys of Kermanshah province, west of Iran. J Parasit Dis 40: 448-453.
Roy L, Dowling AP, Chauve CM, Lesna I, Sabelis MW, Buronfosse T (2009) Molecular phylogenetic assessment of host range in five Der-manyssus species. Exp Appl Acarol 48: 115-142.
Shaaya E, Ravid U, Paster N, Juven B, Zisman U, Pissarev V (1991) Fumigant toxicity of essential oils against four major stored-product insects. J Chem Ecol 17: 499-504.
Sokól R, Romaniuk K (2006) Attempt to use traps to combat Dermanyssus gallinae infestation Med Weter 62: 1202-1204.
Sokół R, Szkamelski A, Barski D (2008) Influence of light and darkness on the behaviour of Dermanyssus gallinae on layer farms. Pol J Vet Sci 11: 71-73.
Sommer D, Heffels-Redmann U, Köhler K, Lierz M, Kaleta EF (2016) Role of the Poultry Red Mite ( Demanyssus gallinae) in the transmission of avian influenza A virus. Tierarztl Prax Ausg G Grosstiere Nutztiere 44: 26-33.
Sparagano OA, George DR, Harrington DW, Giangaspero A (2014) Significance and control of the poultry red mite, Dermanyssus gallinae. Annu Rev Entomol 59: 447-466.
Sparagano OA, Khallaayoune K, Duvallet G, Nayak S, George D (2013) Comparing terpenes from plant essential oils as pesticides for the poultry red mite ( Dermanyssus gallinae). Transbound Emerg Dis 60 (Suppl 2): 150-153.
Sparagano OA, Pavlicevic A, Murano T, Camarda A, Sahibi H, Kilpinen O, Mul M, van Emous R, le Bouquin S, Hoel K, Cafiero MA (2009) Prevalence and key figures for the poultry red mite Dermanyssus gallinae infections in poultry farm systems. Exp Appl Acarol 48: 3-10.
Stešević D, Božović M, Tadić V, Rančić D, Stevanović ZD (2016) Plant-part anatomy related composition of essential oils and phenolic compounds in Chaerophyllum coloratum, a Balkan endemic species. Flora - Morphology, Distribution, Functional Ecology of Plants 220: 37-51.
Tabari MA, Rostami A, Khodashenas A, Maggi F, Petrelli R, Giordani C, Tapondjou LA, Papa F, Zuo Y, Cianfaglione K, Youssefi MR (2020) Acaricidal activity, mode of action, and persistent efficacy of selected essential oils on the poultry red mite ( Dermanyssus gallinae). Food Chem Toxicol 138: 111207.
Tabari MA, Youssefi MR, Benelli G (2017) Eco-friendly control of the poultry red mite, Dermanyssus gallinae (Dermanyssidae), using the α-thujone-rich essential oil of Artemisia sieberi (Asteraceae): toxic and repellent potential. Parasitol Res 116: 1545-1551.
Thind BB, Ford HL (2007) Assessment of susceptibility of the poultry red mite Dermanyssus gallinae (Acari: Dermanyssidae) to some acaricides using an adapted filter paper based bioassay. Vet Parasitol 144: 344-348.
Thompson GD, Dutton R, Sparks TC (2000) Spinosad – a case study: an example from a natural products disco very programme. Pest Manag Sci 56: 696-702.
Van Emous R (2005) Wage war against the red mite! Poultry Int 44: 26-33.
Van Emous R (2017) Verwachtte schade bloedluis 21 miljoen euro. Pluimveeweb.nl. https://www.pluimveeweb.nl//artikelen/2017/01/schade-bloedluis-21-miljoen-euro/. [Accesed Jul 26 2021].
Wójcik AR, Grygon-Franckiewicz B, Żbikowska E, Wasielewski L (2000) Invasion of Dermanyssus gallinae (De Geer, 1778) in poultry farms in the Torun region. Wiad Parazytol 46: 511-515.
Zdybel J, Karamon J, Cencek T (2011) In Vitro effectiveness Of Selected Acaricides Against Red Poultry Mites ( Dermanyssus gallinae, De Geer, 1778) Isolated From Laying Hen Battery Cage Farms Localised In Different Regions Of Poland. Bull Vet Inst Pulawy 55: 411-416.
Go to article

Authors and Affiliations

M. Roczeń-Karczmarz
1
M. Demkowska-Kutrzepa
1
J. Zdybel
2
K. Szczepaniak
1
M. Studzińska
1
K. Tomczuk
1

  1. Department of Parasitology and Invasive Diseases, Faculty of Veterinary Medicine, University of Life Sciences, Akademicka 12, 20-033 Lublin, Poland
  2. Department of Parasitology and Invasive Diseases, National Veterinary Research Institute in Puławy, Al. Partyzantów 57, 24-100, Puławy, Poland
Download PDF Download RIS Download Bibtex

Abstract

The adverse effects of synthetic acaricides on humans, animals, non-target organisms and the ecosystem are serious problems. Thus, there is a new trend to use nanotechnology for developing new, natural, bio and safe acaricides for mite control in green-pest management. This is the first work for preparing a nanoformulation of rosemary essential oil (EO) and evaluating its effect against the two-spotted spider mite Tetranychus urticae Koch. GC/MS analysis of rosemary EO showed that 1,8 cineole (31.45%), borneol (11.07%), α-pinene (10.91%), D-limonene (9.19%), L-linalool (8.86%), D-camphor (7.32%), γ-terpinene (3.92%), linalyl acetate (3.37%), α-terpineol (3.32%), and p-cymene (1.82%) were the major components. After 6 min of sonication, a nanoemulsion of rosemary EO was formulated with a droplet size of 139.9 nm. The balance between oil (lyophilic) and surfactant (hydrophilic) was correlated with the droplet size and the stability of the nanoemulsion. Spray application of rosemary nanoemulsion showed high acaricidal activity against immature and adult two-spotted spider mites T. urticae with LC50 723.71 and 865.68 μg · ml−1 and the toxicity increased by 54.15 and 52.69% for immature and adult mites, respectively. There were no toxic effects or mortality of rats treated with rosemary nanoemulsion. High acaricidal activity, stability, and safety of rosemary nanoemulsion make this nanoformulation a possible green and nano-acaricidal product. Further studies under field conditions are necessary to study the acaricidal efficiency of rosemary nanoemulsion against two-spotted spider mites and the toxic effect on predacious mites.

Go to article

Authors and Affiliations

Abdel-Tawab H. Mossa
Sahar I. Afia
Samia M.M. Mohafrash
Badawi A. Abou-Awad
Download PDF Download RIS Download Bibtex

Abstract

Bionomy of spruce spider mite (SSM) (Oligonychus ununguis Jacobi) on five species/cultivars of spruce and two species of cypress was studied under laboratory conditions during rwo consecutive growing seasons. The study showed influence of host-plant food on development time, fecundity and longevity of SSM. The comparison of intrinsic rate of natural increase (r,J indicates the highest reproduction potential of SSM on Picea pungens (0.18), P. abies 'Nidiformis' (0.17), and P. glauca 'Conica' (0.14). SSM had much lowest rm on P. omorica (O.OS) and P abies 'Virgata' (O.Ol). The reproductive potential of SSM on rested species of cypresses was similar: 0.12 and 0.10 on Chamaecyparis lawsoniana 'Golden Wonder" and C. pisifera 'Nana Aureovariegata', respectively. The results obtained clearly indicate that the population parameters can be a proper indicator ofrelative susceptibility/resistance of commercially available species/cultivars of spruce and cypress plants to SSM.
Go to article

Authors and Affiliations

Barbara Czajkowska
Małgorzata Kiełkiewicz
Ewa Puchalska

This page uses 'cookies'. Learn more