Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Data
  • Type

Search results

Number of results: 16
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

Agriculture is a signifi cant source of gaseous pollutants such as ammonia, methane, nitrous oxide and volatile organic compounds. Ammonia is particularly important due to the high emission and local, as well as global impact on the environment. The release of NH3 is one of the main ways of nitrogen emission to the atmosphere and it contributes to its subsequent deposition. The aim of the study was to analyze ammonia emissions from animal production in Poland in 2005–2017, its regional diversity and possibilities of its reduction in agriculture. The ammonia emission was calculated for the animal production groups according to the NFR classifi cation. The values of ammonia emission were calculated based on ammonia emission factors used by KOBIZE, in accordance with the EMEP/EEA methods. In 2017, the NH3 emission from Polish agriculture amounted 288 Gg and it accounted for 96% of the emission in 2005. Ammonia emission from livestock production, in 2005–2017, on average accounted for 79.8% of agricultural emissions. The largest share had the cattle (51%) and swine (30%) production. The NH3 emissions differed strongly between provinces. The emission density (kg NH3·km-2·year-1) in provinces with intensive livestock production was about 5.5 times higher than in regions, where livestock production was the lowest. The mitigation strategies should be implemented primarily in provinces where reduction potential is the largest. The assessment of the reduction potential should take into account the NH3 emission per 1 km2 and the low

NH3 emission technologies, which are already applied in the regions.

Go to article

Authors and Affiliations

Paulina Mielcarek-Bocheńska
Wojciech Rzeźnik
Download PDF Download RIS Download Bibtex

Abstract

Attitudes, or a person’s internal/mental beliefs about a specific situation, object or concept can greatly influence behaviors. This truth also applies to linguistic choices made by second language students. Their low level of knowledge of cross-cultural differences as well as pragmatic competence intertwined with inner norms and attitude towards politeness can result in producing the discourse which could not be considered appropriate. The fact of using and learning a second language (being bilingual or multilingual) may influence the level of politeness. The aim of this paper is to illustrate the differences existing in the scope of politeness revealed in the written, contrastive (Polish-English) discourse. The corpus under investigation encompasses seventy six emails written in the two languages by English philology students of teachers faculty. The analysis focuses on the level of politeness as exhibited through various forms of hedges and mitigations used both in the Polish and English language.

Go to article

Authors and Affiliations

Iwona Dronia
Download PDF Download RIS Download Bibtex

Abstract

Reducing the effect of unwanted vibrations is an important topic in many engineering applications. In this paper we describe some recent developments in the area of passive vibration mitigation. This is based on a new device called the inerter which can be exploited in a range of different contexts. In this paper we consider two recent examples; (i) where a flywheel inerter is combined with a hysteretic damper, and (ii) in which a pivoted bar inerter is developed for a machining application. In both cases, experimental test results show that the devices can outperform existing methods.
Go to article

Authors and Affiliations

David J. Wagg
1
ORCID: ORCID

  1. Department of Mechanical Engineering, University of Sheffield, Sheffield, United Kingdom
Download PDF Download RIS Download Bibtex

Abstract

The paper concerns the optimization of a tuned mass damper with inerter (TMDI) based on two strategies, i.e., the minimum amplitude in the resonance peak and minimum area under the frequency response curve. The optimization is based on real, accessible parameters. Both optimization procedures are presented in two steps. In the first one, two parameters of the TMDI are tuned (inertance and damping coefficient), while in the second one, three parameters (mass, inertance, and damping coefficient). We show that both strategies give the optimum sets of parameters and allow the reduction of the amplitude of the damped system.
Go to article

Authors and Affiliations

Konrad Mnich
1
Przemysław Perlikowski
1
ORCID: ORCID

  1. Division of Dynamics, Lodz University of Technology, Stefanowskiego 1/15, 90-924 Lodz, Poland
Download PDF Download RIS Download Bibtex

Abstract

The Non Line of Sight (NLOS) broadband wireless access provided by Worldwide Interoperability for Microwave Access (WiMAX) operating in 2-11 GHz frequency is susceptible to the effects of multipath propagation, diffraction fading, vegetation attenuation, shadowing loss etc. In order to overcome these effects effective fade mitigation techniques, have to be implemented. The Orthogonal Frequency Division Multiplexing- Multiple Input Multiple Output (OFDM-MIMO) is an efficient method that helps in combatting the fading and providing higher SNR to the WiMAX system. According to the IEEE 802.16 specification, for QPSK modulation, a threshold SNR of 6 dB is required for the link to operate. In the present work the use of OFDM-MIMO achieves a SNR above this operating threshold.
Go to article

Authors and Affiliations

Sharmini Enoch
1
Ifiok Otung
2

  1. Department of Electronics and Communications,Noorul Islam University, India
  2. Faculty of Engineering and Informatics, Department of Biomedical and Electronics Engineering University of Bradford, United Kingdom
Download PDF Download RIS Download Bibtex

Abstract

The COVID-19 pandemic has influenced virtually all aspects of our lives. Across the world, countries have applied various mitigation strategies, based on social, political, and technological instruments. We postulate that multi-agent systems can provide a common platform to study (and balance) their essential properties. We also show how to obtain a comprehensive list of the properties by “distilling” them from media snippets. Finally, we present a preliminary take on their formal specification, using ideas from multi-agent logics.
Go to article

Bibliography

  1.  A. Soltani, R. Calo, and C. Bergstrom, “Contacttracing apps are not a solution to the COVID-19 crisis,” Brookings Tech Stream, 27 April 2020. [Online]. Available: https://www.brookings.edu/techstream/inaccurate-and-insecure-why-contact-tracing-apps-could-be-a-disaster/.
  2.  J. Morley, J. Cowls, M. Taddeo, and L. Floridi, “Ethical guidelines for COVID-19 tracing apps,” Nat. Comment, pp. 29–31, 4 June 2020. [Online]. Available: https://www.nature.com/articles/d41586-020-01578-0.
  3.  A. Stollmeyer, M. Schaake, and F. Dignum, “The Dutch tracing app ’soap opera’ – lessons for Europe,” euobserver, 7 May 2020. [Online]. Available: https://euobserver.com/opinion/148265.
  4.  G. Weiss, Ed., Multiagent Systems. A Modern Approach to Distributed Artificial Intelligence. MIT Press: Cambridge, Mass, 1999.
  5.  Y. Shoham and K. Leyton-Brown, Multiagent Systems – Algorithmic, Game-Theoretic, and Logical Foundations. Cambridge University Press, 2009.
  6.  A. Rao and M. Georgeff, “Modeling rational agents within a BDI-architecture,” in Proceedings of KR, 1991, pp. 473–484.
  7.  M.Wooldridge, Reasoning about Rational Agents. MIT Press : Cambridge, Mass, 2000.
  8.  M. Dastani, K. Hindriks, and J. Meyer, Eds., Specification and Verification of Multi-Agent Systems. Springer, 2010.
  9.  W. Jamroga, Logical Methods for Specification and Verification of Multi-Agent Systems. ICS PAS, 2015.
  10.  W. Jamroga, D. Mestel, P.B. Rønne, P.Y.A. Ryan, and M. Skrobot, “A survey of requirements for COVID-19 mitigation strategies. Part I: newspaper clips,” CoRR, vol. abs/2011.07887, 2020.
  11.  A. Lomuscio, H. Qu, and F. Raimondi, “MCMAS: An open-source model checker for the verification of multiagent systems,” Int. J. Software Tools Technol. Trans., vol. 19, no. 1, pp. 9–30, 2017.
  12.  G. Behrmann, A. David, and K. Larsen, “A tutorial on UPPAAL,” in Formal Methods for the Design of Real-Time Systems: SFM-RT, ser. LNCS, no. 3185. Springer, 2004, pp. 200–236.
  13.  G. Kant, A. Laarman, J. Meijer, J. van de Pol, S. Blom, and T. van Dijk, “LTSmin: High-performance languageindependent model checking,” in Proceedings of TACAS, ser. Lecture Notes in Computer Science, vol. 9035. Springer, 2015, pp. 692–707.
  14.  D. Kurpiewski, W. Jamroga, and M. Knapik, “STV: Model checking for strategies under imperfect information,” in Proceedings of AAMAS. IFAAMAS, 2019, pp. 2372–2374.
  15.  S. Woodhams, “COVID-19 digital rights tracker,” Top10VPN, 10 June 2020. [Online]. Available: https://www.top10vpn.com/research/ covid-19-digital-rights-tracker/.
  16.  AFP, “Major finding: Lockdowns averted 3 million deaths in 11 European nations: study,” RTL Today, 9 June 2020. [Online]. Available: https://today.rtl.lu/news/science-and-environment/a/ 1530963.html.
  17.  I. Ilves, “Why are Google and Apple dictating how European democracies fight coronavirus?” The Guardian, 16 June 2020. [Online]. Available: https://www.theguardian.com/commentisfree/2020/jun/16/google-apple-dictating-european-democracies-coronavirus.
  18.  “NHS COVID-19: the new contact-tracing app from the NHS,” NCSC, 14 May 2020. [Online]. Available: https://www.ncsc.gov.uk/ information/nhs-covid-19-app-explainer.
  19.  J. Steinhauer and A. Goodnough, “Contact tracing is failing in many states. Here’s why.” New York Times, 5 October 2020. [Online]. Available: https://www.nytimes.com/2020/07/31/health/covid-contact-tracing-tests.html.
  20.  S. Bicheno, “Unlike France, Germany decides to do smartphone contact tracing the Apple/Google way,” telecoms.com, 27 April 2020. [Online]. Available: https://telecoms.com/503931/unlike-france-germany-de cides-to-do-smartphone-contact-tracing-the-apple-goo gle- way/.
  21.  “Together we can fight coronavirus — Smittestopp,” helsenorge, 28 April 2020. [Online]. Available: https://helsenorge.no/coronavirus/ smittestopp?redirect=false.
  22.  P.H. O’Neill, T. Ryan-Mosley, and B. Johnson, “A flood of coronavirus apps are tracking us. now it’s time to keep track of them,” MIT Technol. Rev., 7 May 2020. [Online]. Available: https://www.technologyreview.com/2020/05/07/1000961/launching-mittr-covid-tracing- tracker/.
  23.  M. Zastrow, “Coronavirus contact-tracing apps: can they slow the spread of COVID-19?” Nature (Technol. Feature), 19 May 2020. [Online]. Available: https://www.nature.com/articles/d41586-020-01514-2.
  24.  J. Taylor, “How did the Covidsafe app go from being vital to almost irrelevant?” The Guardian, 23 May 2020. [Online]. Available: https://www.theguardian.com/world/2020/may/24/how-did-the-covidsafe-app-go-from-being-vital-to-almost-irrelevant.
  25.  D. Robertson, “Transparency key to uptake of coronavirus tracing app,” RMIT news, 27-April 2020. [Online]. Available: https://www. rmit.edu.au/news/all-news/2020/april/transparency-key-to-uptake-of-coronavirus-traci ng-app.
  26.  D. Tahir and C. Lima, “Google and Apple’s rules for virus tracking apps sow division among states,” Politico, 10 June 2020. [Online]. Available: https://www.politico.com/news/2020/06/10/google-and-apples-rules-for-virus-tracking-apps-sow-division-among-states-312199.
  27.  A. Clarance, “Aarogya Setu: Why India’s Covid-19 contact tracing app is controversial,” BBC News, 15 May 2020. [Online]. Available: https://www.bbc.com/news/world-asia-india-52659520.
  28.  J. Davies, “UK snubs Google and Apple privacy warning for contact tracing app,” telecoms.com, 28 April 2020. [Online]. Available: https://telecoms.com/503967/uk-s nubs-google-and-apple-privacy-warning-for-contact-tr acing-app/.
  29.  A. Eisenberg, “Privacy fears threaten New York City’s coronavirus tracing efforts,” Politico, 4 June 2020. [Online]. Available: https:// www.politico.com/states/new-york/albany/story/2020/06/04/privacy-fears-threaten-new-york-citys-coronavirus-tracing-efforts-1290657.
  30.  C. Timberg, “Most Americans are not willing or able to use an app tracking coronavirus infections. that’s a problem for Big Tech’s plan to slow the pandemic,” Washington Post, 29 April 2020. [Online]. Available: https://www.washingtonpost.com/technology/2020/04/ 29/ most-americans-are-not-willing-or-able-use-an-app-tracking-coronavirus-infections-thats-problem-big-tec hs-plan-slow-pandemic/.
  31.  M. Burgess, “Just how anonymous is the NHS Covid-19 contact tracing app?” Wired, 12 May 2020. [Online]. Available: https://www. wired.co.uk/article/nhs-covid-app-data-anonymous.
  32.  “Getting it right: States struggle with contact tracing push,” Politico, 17 May 2020. [Online]. Available: https://www.politico.com/ news/2020/05/17/privacy-coronavirus-tracing-261369.
  33.  S.L. Frasier, “Coronavirus antibody tests have a mathematical pitfall,” Sci. Am., 1 July 2020. [Online]. Available: https://www. scientificamerican.com/article/coronavirus-antibody-tests- have-a-mathematical-pitfall/.
  34.  M. Scott and Z. Wanat, “Poland’s coronavirus app offers playbook for other governments,” Politico, 2 April 2020. [Online]. Available: https://www.politico.eu/article/poland-coronavirus-app-offers-playbook-for-other-governments/.
  35.  K. McCarthy, “UK finds itself almost alone with centralized virus contact-tracing app that probably won’t work well, asks for your location, may be illegal,” The Register, 5 May 2020. [Online]. Available: https://www.theregister.com/2020/05/05/uk_coronavirus_app/.
  36.  “Legal advice on smartphone contact tracing published,” matrix chambers, 3 May 2020. [Online]. Available: https://www.matrixlaw.co.uk/ news/legal-advice-on-smartphone-contact-tracing-published/.
  37.  A. Hern, “UK abandons contact-tracing app for Apple and Google model,” The Guardian, 18 June 2020. [Online]. Available: https://www. theguardian.com/world/2020/jun/18/uk-poised-to-abandon-coronavirus-app-in-favour-of-apple-and-google-models.
  38.  “Coronavirus: Member States agree on an interoperability solution for mobile tracing and warning apps,” European Commission – Press release, 16 June 2020. [Online]. Available: https://digital-strategy.ec.europa.eu/en/news/coronavirus-member-states-agree-interoperability- solution-mobile-tracing-and-warning-apps.
  39.  A. Oslo, “Norway suspends virus-tracing app due to privacy concerns,” The Guardian, 15 June 2020. [Online]. Available: https://www. theguardian.com/world/2020/jun/15/norway-suspends-virus-tracing-app-due-to-privacy-concerns.
  40.  S. Wodinsky, “The UK’s contact-tracing app breaks the UK’s own privacy laws (and is just plain broken),” Gizmodo, 13 May 2020. [Online]. Available: https://gizmodo.com/the-uk-s-contact-tracing-app-breaks-the-uk-s-own-privac-1843439962.
  41.  R. Garthwaite and I. Anderson, “Coronavirus: Alarm over ’invasive’ Kuwait and Bahrain contact-tracing apps,” BBC News, 16 June 2020. [Online]. Available: https://www.bbc.com/news/world-middle-east-53052395.
  42.  “Coronavirus privacy: Are South Korea’s alerts too revealing?” BBC News, 5 March 2020. [Online]. Available: https://www.bbc.com/ news/amp/world-asia-51733145.
  43.  K. Szymielewicz, A. Obem, and T. Zieliński, “Jak Polska walczy z koronawirusem i dlaczego aplikacja nas przed nim nie ochroni [How Poland fights the corona, and why the app won’t protect us]?” Panoptykon, 5 May 2020. [Online]. Available: https://panoptykon.org/ protego-safe-ryzyka.
  44.  J.-M. Bezat, “L’application StopCovid, activée seulement par 2% de la population, connaît des débuts décevants,” Le Monde, 10 June 2020. [Online]. Available: https://www.lemonde.fr/pixels/article/2020/06/10/l-application-stopcovid-connait-des-debuts- decevants_6042404_4408996.html.
  45.  P.H. O’Neill, “No, coronavirus apps don’t need 60% adoption to be effective,” MIT Technol. Rev., 5 June 2020. [Online]. Available: https:// www.technologyreview.com/2020/06/05/1002775/covid-apps-effective-at-less-than-60-percent-download/.
  46.  R. Hinch et al., “Effective configurations of a digital contact tracing app: A report to NHSX,” Oxford University, Tech. Rep., 2020. [Online]. Available: https://github.com/BDI-pathogens/covid-19_instant_tracing/blob/master/Report-EffectiveConfigurationsofaDigitalC ontactTracingApp.pdf.
  47.  “Corona-app soll open source werden,” Süddeutsche Zeitung, 6 May 2020. [Online]. Available: https://www.sueddeutsche.de/digital/ corona-app-tracing-open-source-1.4899711.
  48.  “Cybernetica proposes privacy-preserving decentralised architecture for COVID-19 mobile application for Estonia,” Cybernetica, 6 May 2020. [Online]. Available: https://cyber.ee/news/2020/05-06/.
  49.  E. Emerson, “Temporal and modal logic,” in Handbook of Theoretical Computer Science, J. van Leeuwen, Ed. Elsevier, 1990, vol. B, pp. 995–1072.
  50.  R. Fagin, J.Y. Halpern, Y. Moses, and M.Y. Vardi, Reasoning about Knowledge. MIT Press, 1995.
  51.  J. Broersen, M. Dastani, Z. Huang, and L. van der Torre, “The BOID architecture: conflicts between beliefs, obligations, intentions and desires,” in Proceedings of the Fifth International Conference on Autonomous Agents. ACM Press, 2001, pp. 9–16.
  52.  R. Alur, T.A. Henzinger, and O. Kupferman, “Alternating-time Temporal Logic,” J. ACM, vol. 49, pp. 672–713, 2002.
  53.  N. Bulling, V. Goranko, andW. Jamroga, “Logics for reasoning about strategic abilities in multi-player games,” in Models of Strategic Reasoning. Logics, Games, and Communities, ser. Lecture Notes in Computer Science. Springer, 2015, vol. 8972, pp. 93–136.
  54.  F. Laroussinie and P. Schnoebelen, “A hierarchy of temporal logics with past,” Theoretical Computer Science, vol. 148, no. 2, pp. 303–324, 1995.
  55.  W. Penczek and A. Polrola, Advances in Verification of Time Petri Nets and Timed Automata: A Temporal Logic Approach, ser. Studies in Computational Intelligence. Springer, 2006, vol. 20.
  56.  M. Knapik, É. André, L. Petrucci, W. Jamroga, and W. Penczek, “Timed ATL: forget memory, just count,” J. Artif. Intell., vol. 66, pp. 197–223, 2019.
  57.  W. Jamroga, V. Malvone, and A. Murano, “Natural strategic ability,” Artif. Intell., vol. 277, 2019.
  58.  N. Alechina, B. Logan, H. Nguyen, and A. Rakib, “Resource-bounded alternating-time temporal logic,” in Proceedings of International Joint Conference on Autonomous Agents and Multiagent Systems (AAMAS), 2010, pp. 481–488.
  59.  N. Bulling and B. Farwer, “Expressing properties of resource-bounded systems: The logics RTL* and RTL,” in Proceedings of CLIMA, ser. Lecture Notes in Computer Science, vol. 6214, 2010, pp. 22–45.
  60.  C. Baier and M. Z. Kwiatkowska, “Model checking for a probabilistic branching time logic with fairness,” Distributed Comput., vol. 11, no. 3, pp. 125–155, 1998.
  61.  T. Chen, V. Forejt, M. Kwiatkowska, D. Parker, and A. Simaitis, “PRISM-games: A model checker for stochastic multi-player games,” in Proceedings of TACAS, ser. Lecture Notes in Computer Science, vol. 7795. Springer, 2013, pp. 185–191.
  62.  M. Kwiatkowska, G. Norman, and D. Parker, “PRISM: probabilistic symbolic model checker,” in Proceedings of TOOLS, ser. Lecture Notes in Computer Science, vol. 2324. Springer, 2002, pp. 200–204.
  63.  N.M. Ferguson et al., “Impact of non-pharmaceutical interventions (NPIs) to reduce COVID-19 mortality and healthcare demand,” Imperial College London, Tech. Rep. 9 (16‒03‒2020), 2020.
  64.  B. Adamik et al., “Estimation of the severeness rate, death rate, household attack rate and the total number of COVID-19 cases based on 16 115 Polish surveillance records,” Prepr. Lancet, 2020.
  65.  W. Bock et al., “Mitigation and herd immunity strategy for COVID-19 is likely to fail,” medRxiv, 2020.
  66.  R. McCabe et al., “Modelling ICU capacity under different epidemiological scenarios of the COVID-19 pandemic in three western European countries,” Imperial College London, Tech. Rep. 36 (16‒11‒2020), 2020.
  67.  S. Zionts, “A multiple criteria method for choosing among discrete alternatives,” Eur. J. Oper. Res., vol. 7, no. 2, pp. 143–147, 1981, fourth EURO III Special Issue.
  68.  Y. Collette and P. Siarry, Multiobjective Optimization: Principles and Case Studies. Springer, 2004.
  69.  R. Radulescu, P. Mannion, D. M. Roijers, and A. Nowé, “Multi-objective multi-agent decision making: a utilitybased analysis and survey,” Auton. Agents Multi-Agent Syst., vol. 34, no. 1, p. 10, 2020.
Go to article

Authors and Affiliations

Wojciech Jamroga
1 2
David Mestel
1
Peter B. Roenne
1
Peter Y.A. Ryan
1
Marjan Skrobot
1

  1. Interdisciplinary Centre on Security, Reliability and Trust, SnT, University of Luxembourg
  2. Institute of Computer Science, Polish Academy of Sciences, ul. Jana Kazimierza 5, 01-248 Warsaw, Poland
Download PDF Download RIS Download Bibtex

Abstract

The paper introduces Extended Identification-Based Predictive Control (EIPC), which is a novel control method developed for the problem of adaptive impact mitigation. The model-based approach utilizing the paradigm of Model Predictive Control is combined with sequential identification of selected system parameters and process disturbances. The elaborated method is implemented in the shock-absorber control system and tested under impact loading conditions. The presented numerical study proves the successful and efficient adaptation of the absorber to unknown excitation conditions as well as to unknown force and leakage disturbances appearing during the process. The EIPC is used for both semi-active and active control of the impact mitigation process, which are compared in detail. In addition, the influence of selected control parameters and disturbance identification on the efficiency of the impact absorption process is assessed. As a result, it can be concluded that an efficient and robust control method was developed and successfully applied to the problem of adaptive impact mitigation.
Go to article

Authors and Affiliations

Cezary Graczykowski
1
ORCID: ORCID
Rami Faraj
1
ORCID: ORCID

  1. Institute of Fundamental Technological Research PAS, Pawi´nskiego 5B, 02-106 Warszawa, Poland
Download PDF Download RIS Download Bibtex

Abstract

Blast mitigation continues to be a popular field of research when military vehicles are concerned. The main problem is coping with the vehicle global motion consequences following an explosion. The paper presents a potential application of the linear vacuum packed particle (VPP) damper as a supplementation for a viscous shock absorber in a traditional blast mitigation seat design. The paper also presents field test results for the underbelly blast explosion, comparing them to the laboratory tests carried out on the impact bench. To collect accelerations, the anthropomorphic test device, i.e. the Hybrid III dummy, was used. A set of numerical simulations of the modified blast mitigation seat with the additional VPP linear damper were revealed. The VPP damper was modeled according to the Johnson–Cook model of viscoplasticity. The Hertzian contact theory was adopted to model the contact between the vehicle and the ground. The reduction of the dynamic response index (DRI) in the case of the VPP damper application was also proved.
Go to article

Bibliography

  1.  F. Melanie and P.V.S. Lee, Military Injury Biomechanics The Cause and Prevention of Impact Injuries. CRC Press, 2017.
  2.  H. Kamel, O. Harraz, M. Yacoub, and A. Ali, “Developing a custom Anthropomorphic Test Device for measuring blast effects on occupants inside armored vehicles”, J. Eng. Sci. Mil. Technol., vol. 3, no. 2, pp. 70–76, 2019, doi: 10.21608/ejmtc.2019.15041.1127.
  3.  I. Overton, “A decade of global IED harm reviewed |AOAV”, Action on Armed Violence, 2020. [Online]. Available: https:// aoav.org.uk/2020/a- decade-of-global-ied-harm-reviewed/ (accessed Feb. 05, 2021).
  4.  M. Müller, U. Dierkes, and J. Hampel, “Blast protection in military land vehicle programmes: Approach, methodology and testing”, WIT Trans. Built Environ., vol. 87, pp. 247–257, Jun. 2006, doi: 10.2495/SU060251.
  5.  A. Iluk, “Estimation of spine injury risk as a function of bulletproof vest mass in case of Under Body Blast load”, 2014 IRCOBI Conf. Proc. – Int. Res. Counc. Biomech. Inj., 2014, pp. 809–820.
  6.  Research and Technology Organisation North Atlantic Treaty Organisation, Protection level of armoured vehicles volume 2, AEP-55, vol. 2, no. AUGUST. Allied Engineering Publication, 2011.
  7.  Research and Technology Organisation North Atlantic Treaty Organisation, “Test Methodology for Protection of Vehicle Occupants against Anti-Vehicular Landmine Effects,” 2007.
  8.  M. Cheng, D. Bueley, J.P. Dionne, and A. Makris, “Survivability evaluation of blast mitigation seats for armored vehicles”, 26th Int. Symp. Ballist., 2011.
  9.  P. Baranowski and J. Malachowski, “Numerical study of selected military vehicle chassis subjected to blast loading in terms of tire strength improving”, Bull. Polish Acad. Sci. Tech. Sci., vol. 63, no. 4, pp. 867–878, 2015, doi: 10.1515/bpasts-2015-0099.
  10.  V. Denefeld, N. Heider, A. Holzwarth, A. Sättler, and M. Salk, “Reduction of global effects on vehicles after IED detonations”, Def. Technol., vol. 10, no. 2, pp. 219–225, 2014, doi: 10.1016/j.dt.2014.05.005.
  11.  M. Żurawski and R. Zalewski, “Damping of Beam Vibrations Using Tuned Particles Impact Damper”, Appl. Sci., vol. 10, p. 6334, 2020, doi: 10.3390/app10186334.
  12.  J. Ramalingam and R. Thyagarajan, “Analysis of Design Range for a Stroking Seat on a Stroking Floor to Mitigate Blast Loading Effects”, NATO Sci. Technol. Organ. Publ., 2017.
  13.  G. Hiemenz, M. Murugan, W. Hu, N. Wereley, and J.H. Yoo, “Adaptive Seat Energy Absorbers for Enhanced Crash Safety: Technology Demonstration,” 2016.
  14.  S.A. Venkatesh Babu, R. Thyagarajan, “Retractor-Based Stroking Seat System and Energy-Absorbing Floor to Mitigate High Shock and Vertical Acceleration”, NATO/STO AVT-221 Spec. Meet. “Design Prot. Technol. L. Amphib. NATO Veh.”, 2014.
  15.  S.P. Desjardins, “The evolution of energy absorption systems for crashworthy helicopter seats”, J. Am. Helicopter Soc., vol. 51, no. 2, pp. 150–163, 2006, doi: 10.4050/JAHS.51.150.
  16.  M. Żurawski, B. Chiliński, and R. Zalewski, “A Novel Method for Changing the Dynamics of Slender Elements Using Sponge Particles Structures”, Materials (Basel)., vol. 13, no. 21, p. 4874, 2020, doi: 10.3390/ma13214874.
  17.  P. Bartkowski and R. Zalewski, “A concept of smart multiaxial impact damper made of vacuum packed particles”, MATEC Web Conf., vol. 157, p. 05001, 2018.
  18.  G. Bienioszek and S. Kciuk, “Determination of Boundary Conditions for the Optimization Process of Blast Mitigation”, in 23rd International Conference Engineering Mechanics 2017, 2017.
  19.  R. Zalewski, P. Chodkiewicz, and M. Shillor, “Vibrations of a mass-spring system using a granular-material damper”, Appl. Math. Model., vol. 40, no. 17–18, pp. 8033–8047, 2016, doi: 10.1016/j.apm.2016.03.053.
  20.  R. Zalewski and T. Szmidt, “Application of Special Granular Structures for semi-active damping of lateral beam vibrations”, Eng. Struct., vol. 65, pp. 13–20, 2014, doi: 10.1016/j.engstruct.2014.01.035.
  21.  R. Zalewski and M. Pyrz, “Mechanics of Materials Experimental study and modeling of polymer granular structures submitted to internal underpressure”, Int. J. Mech. Mater., vol. 57, pp. 75–85, 2013, doi: 10.1016/j.mechmat.2012.11.002.
  22.  E. Brown et al., “Universal robotic gripper based on the jamming of granular material”, Proc. National Academy of Sciences, vol. 107, no. 44 pp. 18809–18814, 2010, doi: 10.1073/pnas.1003250107.
  23.  M.D. Luscombe and J.L. Williams, “Comparison of a long spinal board and vacuum mattress for spinal immobilisation”, Emerg. Med. J., vol. 20, pp. 476–478, 2003.
  24.  P. Bartkowski, R. Zalewski, and P. Chodkiewicz, “Parameter identification of Bouc-Wen model for vacuum packed particles based on genetic algorithm”, Arch. Civ. Mech. Eng., vol. 19, pp. 322–333, 2019, doi: 10.1016/j.acme.2018.11.002.
  25.  D. Rodak and R. Zalewski, “Innovative Controllable Torsional Damper Based on Vacuum Packed Particles”, Materials (Basel)., vol. 13, p. 4356, 2020.
  26.  Y. Tsuji, T. Tanaka, and T. Ishida, “Lagrangian numerical simulation of plug flow of cohesionless particles in a horizontal pipe”, Powder Technol., vol. 71, pp. 239–250, 1992.
  27.  R. Chakrabarty and J. Song, “A modified Johnson–Cook material model with strain gradient plasticity consideration for numerical simulation of cold spray process”, Surf. Coat. Technol., vol. 397, p. 125981, 2020, doi: 10.1016/j.surfcoat.2020.125981.
  28.  I.P. Herman, Biological and Medical Physics, Biomedical Engineering. Springer, 2008. p.16–17.
Go to article

Authors and Affiliations

Dominik Rodak
1
ORCID: ORCID
Mateusz Żurawski
1
ORCID: ORCID
Michał Gmitrzuk
2
ORCID: ORCID
Lech Starczewski
2

  1. Faculty of Automotive and Construction Machinery Engineering, Warsaw University of Technology, Poland
  2. Military Institute of Armoured and Automotive Technology, Poland
Download PDF Download RIS Download Bibtex

Abstract

The purpose of this study is to investigate a structure’s response to blast loading when composite columns are used instead of conventional reinforced concrete (RC) cross sections and when a conventional structure is retrofitted with braces. The study includes conducting dynamic analyses on three different structures: a conventional reference RC structure, a modified structure utilizing composite columns, and a modified structure retrofitted with steel braces. The two modified structures were designed in order to investigate their performance when subjected to blast loading compared to the conventional design. During the dynamic analyses, the structures were exposed to simulated blast loads of multiple intensities using the finite-element modelling software, SeismoStruct. To evaluate their performance, the responses of the modified structures were analyzed and compared with the response of the conventional structure. It was concluded that both the structure with composite columns and the steel brace structure experienced less damage than the conventional model. The best performance was obtained through the steel brace structure.

Go to article

Authors and Affiliations

Y.E. Ibrahim
M. Almustafa
Download PDF Download RIS Download Bibtex

Abstract

Ocean law has developed greatly in the recent years as an area within maritime law and environmental law. The increased attention has been received mainly due to the sea- level rise, ocean acidification and changing ocean currents caused by climate change. The negative impacts of climate change affect a wide spectrum of law and policy and have direct and indirect implications on various aspects such as: international security, food security, shipping, fisheries, marine and coastal governance etc. According to the IPCC 2018 Report, ocean ecosystems are already experiencing large-scale changes and critical thresholds are expected to be reached at higher levels of global warming. The main aim of this article is to present how the ocean law and climate law respond to the regulatory challenges caused by climate change.
Go to article

Authors and Affiliations

Monika Adamczak-Retecka
1
ORCID: ORCID

  1. Department of European Law and Comparative Law, Faculty of Law and Administration, University of Gdańsk
Download PDF Download RIS Download Bibtex

Abstract

The article presents the main elements of the European transport policy and the issues prevailing in the public debate in the last decade, i.e. 2010-2020. In particular, it analyses the challenges for European transport resulting from the need to combat climate change and to ensure a high level of environmental protection and safety, while taking into account the progressing technological revolution. The main assumptions of the European Green Deal, which aims to achieve climate neutrality by the European Union by 2050, are presented. The example of maritime transport serves to describe how various transport sectors are being brought into line with EU climate targets.

Go to article

Authors and Affiliations

Magdalena Adamowicz
Download PDF Download RIS Download Bibtex

Abstract

The Semarang-Demak plain has experienced intense human intervention over the last 40 years, thereby causing land subsidence. This study aims to assess long-term conditions in the study area using the drivers-pressuresstate- impacts-response (DPSIR) framework to mitigate land subsidence. Methods include analysis of land subsidence, socioeconomic, surface, and subsurface data, as well as spatial analysis. Results show that rapid population growth and economic activities are major driving forces, manifesting as pressures exerted from overexploitation of groundwater, increasing building and infrastructure loads, and decreasing non-built areas. Groundwater overexploitation reduced the artesian pressure in the 1980s, forming depression cones of the groundwater level from 5 to 30 m below mean sea level. From 1984 to the present, the constructed areas have increased more than tenfold, with Semarang City possessing the most densely built area. Based on our findings, we propose responses consisting of surface water utilization, spatial building regulation, and rigorous groundwater and land subsidence monitoring. Moreover, we encourage the strengthening of law enforcement and inter-sectoral management to ensure the successful land subsidence mitigation.
Go to article

Authors and Affiliations

Dwi Sarah
1
ORCID: ORCID
Asep Mulyono
2
ORCID: ORCID
Nugroho Aji Satriyo
1
ORCID: ORCID
Eko Soebowo
1
ORCID: ORCID
Taufiq Wirabuana
3

  1. Research Centre for Geological Disaster, National Research and Innovation Agency (BRIN), Gedung B.J Habibie, Jl. M.H. Thamrin no. 8, Jakarta 10340, Indonesia
  2. Research Centre for Environmental and Clean Technology, National Research and Innovation Agency (BRIN), Jakarta, Indonesia
  3. Center for Groundwater and Environmental Geology, Geological Agency, Ministry of Energy and Mineral Resources, Bandung, Indonesia
Download PDF Download RIS Download Bibtex

Abstract

This paper presents the problem of the increasing negative impact of urban heat islands (UHI) on urban residents based on land surface temperature (LST). It is assumed that water bodies in the agglomeration remain cooler than the air and surrounding urban areas. The study aimed to determine the impact of water bodies and surrounding areas covered by trees on the temperature of an urban area and to minimise the impact of UHI on the life quality of people in the temperate climate zone at day temperatures 25°C (W day) and 29°C (H day). In the adopted research methodology, 167 reservoirs, larger than 1 ha, located within 300 m of urban areas, were analysed. Satellite thermal imagery, spatial land use data (Corine Land Cover), and local land characteristics were used. The average temperature of the reservoirs was appropriately at 4.69°C on W day and 1.9°C for H day lower than in residential areas. The average temperature of areas at a distance of 30 m from the reservoirs was 2.69°C higher onWand 0.32°C higher on H than the water of the reservoirs. The area covered by trees was 0.52°C lower on W day and 0.39°C lower on H day than the residential areas located at a distance of 300 m from the reservoir. On terrestrial areas, the lowest temperature was observed in the area covered by trees within 0–30 m from reservoirs both on warm and hot days. Based on the results of this study, UHI mitigation solutions can be suggested.
Go to article

Authors and Affiliations

Edyta Sierka
1
ORCID: ORCID
Łukasz Pierzchała
2

  1. University of Silesia in Katowice, Faculty of Natural Sciences, Jagiellońska St. 28, 40-032 Katowice, Poland
  2. Central Mining Institute in Katowice, Katowice, Poland
Download PDF Download RIS Download Bibtex

Abstract

The paragraphs 300-305 belong to the most controversially discussed quotations of the Pope’s Francis Exhortation Amoris laetitia. A suggestion appears in them, that people living a non-sacramental unions can find themselves subjectively unable to act differently without causing a new harm, though at the same time they are fully aware that their present living conditions are objectively a grave sin. Such people – so the Pope says – are not deprived of the divine grace and could under some circum-stances received the sacraments. These statements are interpreted in different ways. According to the first interpretation the particular circumstances can change the moral character of the person’s act so far that the life in a non-sacramental union can no more be assessed as an adultery i.e. a grave sin. The supporters of the second inter-pretation claim that the particular circumstances could cause a grave moral constraint which – like other forms of constraint too - can diminish one’s moral responsibility, though his/her act remain objectively a grave sin. Eventually according to the third interpretation the statements of Pope Francis are in the present article related to the particular category of people living in non-sacramental unions namely those ones who are subjectively convinced that their first marriage was never valid.

Go to article

Authors and Affiliations

Ks. prof. dr hab. Marian Machinek MSF
Download PDF Download RIS Download Bibtex

Abstract

The surface water temperature in the Baltic Sea has been growing as a consequence of broader changes of the Earth’s climate, which contributes to the proliferation of natural bacterioplankton and new types of bacteria, such as Vibrio vulnificus, in the region. This pathogenic bacterium finds optimal conditions for growth primarily in warm brackish waters. Places particularly vulnerable to these bacteria include shallow Baltic coastal waters where the proliferation of Vibrio strains increases in summer. The growing temperature of coastal waters boost this phenomenon, posing a serious threat to human health and the coastal Baltic tourism.
The BaltVib project implemented by marine microbiologists investigates the impact of the so-called “system engineers”, e.g. mussels, macroalgae, and seagrass, on the diversity and abundance of vibriosis. The research should help to develop strategies to mitigate the problem of excessive populations of vibriosis through nature-based solutions.
In addition to environmental and health issues, public awareness of the phenomena and future threats are equally important and these are also addressed in the project. The article presents results of a survey conducted on the Polish coast involving 140 respondents interviewed concerning their awareness of the increasing population of pathogenic vibriosis. The survey helped to diagnose how local residents perceive the threat to human health posed by Vibrio vulnificus now and in the future, as well as possible impacts these bacteria might have on economic use of the coastal waters. The survey also investigated the level of acceptance for various methods used to mitigate negative environmental changes.
Go to article

Authors and Affiliations

Joanna Piwowarczyk
ORCID: ORCID
Marcin Rakowski
1
ORCID: ORCID
Adam Mytlewski
1
ORCID: ORCID

  1. National Marine Fisheries Research Institute, St H. Kołłątaja 1, 81-332 Gdynia, Poland
Download PDF Download RIS Download Bibtex

Abstract

The article analyzes soil organic carbon (SOC) content of in Poland from 2015 to 2021. The research aims to determine SOC levels and their dependence on soil agronomic categories and drought intensity. Soil samples from 1011 farms across 8 Polish voivodships were collected for analysis, all from the same agricultural plots. SOC determination was conducted using the Tiurin method. The results indicate a low SOC content nationwide (0.85-2.35%). Heavy soils exhibited higher SOC accumulation compared to light soils. Moreover, significant drought impact led to decreased SOC content in affected regions. Scientific evidence underscores a declining trend in organic carbon stock within agricultural soils, attributed to natural soil changes and unsustainable management practices. This decline is concerning given the crucial role of SOC in soil health, quality, and crop productivity. Therefore, it is imperative to monitor and address areas with low SOC levels to enhance SOC abundance. Furthermore, when used as a whole-cell biocatalyst in a low-cost upflow MFC, the Morganella morganii-rich SF11 consortium demonstrated the highest voltage and power density of 964.93±1.86 mV and 0.56±0.00 W/m3, respectively. These results suggest that the SF11 bacterial consortium has the potential for use in ceramic separator MFCs for the removal of penicillin and electricity generation.
Go to article

Bibliography

  1. Amoah-Antwi, C., Kwiatkowska-Malina, J., Szara, E., Fentona, O., Thornton, S.F. & Malina, G. (2022). Title of article, Assessing Factors Controlling Structural Changes of Humic Acids in Soils Amended with Organic Materials to Improve Soil Functionality, Agronomy, 12(2), pp. 1–17. DOI:10.3390/agronomy12020283.
  2. Breś, W., Golcz, A., Komosa, A., Kozik, E. & Tyksiński, W. (1997). Fertilization of garden plants. Edited by A.R. w Poznaniu. Poznań (1997).
  3. Castañeda-Gómez, L., Lajtha, K., Bowedena, R., Jauhar, F.N.M., Jai, J., Feng, X. & Simpson, M.J. (2023). Soil organic matter molecular composition with long-term detrital alterations is controlled by site-specific forest properties, Global Change Biology, 29(1), pp. 243–259. DOI:10.1111/gcb.16456.
  4. Communication from The Commission to The Council, The European Parliament, The European Economic and Social Committee and The Committee of The Regions - Thematic Strategy for Soil Protection (2006) Commission of The European Communities. https://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=COM:2006:0231:FIN:EN:PDF.
  5. Cotrufo, M.F. & Lavallee, J.M. (2022). Chapter One - Soil organic matter formation, persistence, and functioning: A synthesis of current understanding to inform its conservation and regeneration, Advances in Agronomy, 172, pp. 1–66.
  6. Dignac, M.F., Derrein, D., Barre, P., Barot, S., Cécillon, L., Chenu, C., Chevalier, T., Freschet, G.T., Garnier, P., Guenet, B., Hedde, M., Klumpp, K., Laschermes, G., Maron, P.A., Nunan, N., Rumet, K. & Basile-Doelsch, I. (2017). Increasing soil carbon storage: mechanisms, effects of agricultural practices and proxies. A review, Agronomy for Sustainable Development, 37(2). DOI:10.1007/s13593-017-0421-2.
  7. Dynarski, K.A., Bossio, D.A. & Scow, K.M. (2020). Dynamic Stability of Soil Carbon: Reassessing the “Permanence” of Soil Carbon Sequestration, Frontiers in Environmental Science, 8. DOI:10.3389/fenvs.2020.514701.
  8. Francaviglia, R. Almagro, M. & Vicente-Vicente, J.L., (2023). Conservation Agriculture and Soil Organic Carbon: Principles, Processes, Practices and Policy Options, Soil Systems, 7(17), pp. 1–35. DOI:10.3390/soilsystems7010017.
  9. Gerke, J. (2022). The Central Role of Soil Organic Matter in Soil Fertility and Carbon Storage, Soil Systems, 6(2). DOI:10.3390/soilsystems6020033.
  10. Giachin, G., Neprawiszta, R., Mandaliti, W., Melino, S., Morgan, A., Scaini, D., Mazzei, P., Piccalo, A., Lagname, G., Paci, M. & Leita, L. (2017). The mechanisms of humic substances self-assembly with biological molecules: The case study of the prion protein, PLoS ONE, 12(11), pp. 1–16. DOI:10.1371/journal.pone.0188308.
  11. Gonet, S.S. &Markiewicz, M. (2007). The role of organic matter in the environment, PTSH, Wrocław 2007.
  12. Intergovernmental Panel on Climate Change (2022). Risk management and decision-making in relation to sustainable development, Climate Change and Land. DOI:10.1017/9781009157988.009.
  13. Kiryluk, A. & Kostecka, J. (2023). Sustainable development in rural areas in the perspective of a decade of ecosystem restoration, Ekonomia i Środowisko - Economics and Environment, 83(4). DOI:10.34659/eis.2022.83.4.535.
  14. Kuś, J. (2015). Soil organic matter - meaning, content and balancing, Studies and Reports IUNG-PIB, 45(19), pp. 27–53. DOI:10.26114/sir.iung.2015.45.02. (in Polish)
  15. Lal, R., Follertt, R.F., Stewart, B.A. & Kimble, J.M. (2007). Soil carbon sequestration to mitigate climate change and advance food security, Soil Science, 172(12), pp. 943–956. DOI:10.1097/ss.0b013e31815cc498.
  16. Lipiński, W., Lipińska, H., Kornas, R. & Watros, A.(2020). Selected agrochemical parameters of grassland soils in Poland, Agronomy Science, 75(2), pp. 5–23. DOI:10.24326/as.2020.2.1. (in Polish)
  17. Łądkiewicz, K., Wszȩdyrówny-Nast, M. & Jaskiewicz, K. (2017). Comparison of different methods for determination of organic matter content, Scientific Review Engineering and Environmental Sciences, 26(1), pp. 99–107. DOI:10.22630/PNIKS.2017.26.1.09.
  18. Myśleńska, E. (2001). Organic soils and laboratory methods of their research, I PWN, Warszawa 2021. (in Polish)
  19. Nachtergaele, F.O., Petri, M. & Biancalani, R. (2016). Land degradation, World Soil Resources and Food Security. DOI:10.4337/9781788974912.l.4.
  20. Nasiri, S., Andalibi,B., Tavakoli, A., Delavar, M.A., El-Keblawy, A., Van Zwieten, L. & Mastinu, A. (2023) The mineral biochar alters the biochemical and microbial properties of the soil and the grain yield of Hordeum vulgare L. under drought stress, Land, 12(3), pp. 1–16. DOI:10.3390/land12030559.
  21. Newton, P., Cyvita, N., Frankel-Goldwater, L., Bartel, K. & Johno, C. (2020). What is regenerative agriculture? A review of scholar and practitioner definitions based on processes and outcomes, Frontiers in Sustainable Food Systems, 4(October), pp. 1–11. DOI:10.3389/fsufs.2020.577723.
  22. Pietrzak, S. & Hołaj-Krzak, J. T. (2022). The content and stock of organic carbon in the soils of grasslands in Poland and the possibility of increasing its sequestration. Journal of Water and Land Development, 54, 68–76. https://doi.org/10.24425/jwld.2022.141556
  23. Pikuła, D. & Rutkowska, A. (2017). Fractional composition of humus as a characteristic of the quality of organic matter, Studies and Reports IUNG-PIB, 53(7), pp. 81–91. DOI:10.26114/sir.iung.2017.53.06.(in Polish)
  24. Robertson, A.D., Paustain, K., Ogle, S., Wallenstein M.D., Lugato, E. & Cotrufo, M.F. (2019). Unifying soil organic matter formation and persistence frameworks: The MEMS model, Biogeosciences, 16(6), pp. 1225–1248. DOI:10.5194/bg-16-1225-2019.
  25. Rusco, E., Jones, R. & Bidoglio, G. (2001). Organic Matter in the soils of Europe: Present status and future trends Institute for Environment and Sustainability European Soil Bureau, European Commission Joint Research Centre [Preprint], (October 2001).
  26. Ryżak, M., Bartmiński, P. & Biegaowski, A. (2009). Methods of determining the granulometric composition of mineral soils, Acta Agrophysica, 175(4), pp. 34-39. http://www.old.acta-agrophysica.org/artykuly/acta_agrophysica/ActaAgr_175_2009_4_1_1.pdf. (in Polish)
  27. Schmidt, M.W.I., Torn, M., Abiven, S., Dittmar, T., Guggenberger, G., Janssen, I.A., Kleber, M., Kogel-Knabner, I., Lehmann, J., Manning, D.AC., Nannipieri, P., Rasse, D., Weiner, S. & Trumbore, S.E. (2011). Persistence of soil organic matter as an ecosystem property, Nature, 478(7367), pp. 49–56. DOI:10.1038/nature10386.
  28. The European Green Deal (2019) European Commission [Preprint], (December), https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=COM:2019:640:FIN.
Go to article

Authors and Affiliations

Urszula Zimnoch
1 2
Paulina Bogusz
1 3
Marzena Sylwia Brodowska
1
Jacek Michalak
4

  1. Department of Agricultural and Environmental Chemistry, University of Life Sciences in Lublin, Poland
  2. Complexor Fertilizer Group, Stawiski, Poland
  3. Fertilizers Research Group, Łukasiewicz Research Network–New Chemical Syntheses Institute, Puławy, Poland
  4. Regional Chemical and Agricultural Station in Łódź, Poland

This page uses 'cookies'. Learn more