Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 5
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

In elastic multibody systems, one considers large nonlinear rigid body motion and small elastic deformations. In a rising number of applications, e.g. automotive engineering, turning and milling processes, the position of acting forces on the elastic body varies. The necessary model order reduction to enable efficient simulations requires the determination of ansatz functions, which depend on the moving force position. For a large number of possible interaction points, the size of the reduced system would increase drastically in the classical Component Mode Synthesis framework. If many nodes are potentially loaded, or the contact area is not known a-priori and only a small number of nodes is loaded simultaneously, the system is described in this contribution with the parameter-dependent force position. This enables the application of parametric model order reduction methods. Here, two techniques based on matrix interpolation are described which transform individually reduced systems and allow the interpolation of the reduced system matrices to determine reduced systems for any force position. The online-offline decomposition and description of the force distribution onto the reduced elastic body are presented in this contribution. The proposed framework enables the simulation of elastic multibody systems with moving loads efficiently because it solely depends on the size of the reduced system. Results in frequency and time domain for the simulation of a thin-walled cylinder with a moving load illustrate the applicability of the proposed method.

Go to article

Authors and Affiliations

Michael Fischer
Peter Eberhard
Download PDF Download RIS Download Bibtex

Abstract

In 2015 an important part of the official evaluation of Polish scientific journals was left to experts’ judgement. In this paper we try to establish which observable factors (with available data) are closely related to the outcome of experts’ evaluation of Polish journals in economic sciences. Using the multiple regression statistical model we show that only 5 variables (out of 17) significantly explain almost 50% of the empirical variance of the experts’ evaluation. The determinants of particular interest, not entering the formal criteria and not related to the impact on global science, are: the number of citations mainly in Polish journals and the affiliation with the Polish Academy of Sciences.

Go to article

Authors and Affiliations

Jacek Osiewalski
Anna Osiewalska
Download PDF Download RIS Download Bibtex

Abstract

Over the last decades the method of proper orthogonal decomposition (POD) has been successfully employed for reduced order modelling (ROM) in many applications, including distributed parameter models of chemical reactors. Nevertheless, there are still a number of issues that need further investigation. Among them, the policy of the collection of representative ensemble of experimental or simulation data, being a starting and perhaps most crucial point of the POD-based model reduction procedure. This paper summarises the theoretical background of the POD method and briefly discusses the sampling issue. Next, the reduction procedure is applied to an idealised model of circulating fluidised bed combustor (CFBC). Results obtained confirm that a proper choice of the sampling strategy is essential for the modes convergence however, even low number of observations can be sufficient for the determination of the faithful dynamical ROM.

Go to article

Authors and Affiliations

Katarzyna Bizon
Download PDF Download RIS Download Bibtex

Abstract

Despite the ever-increasing computational power of modern processors, the reduction of complex multibody dynamic models remains an important topic of investigation, particularly for design optimization, sensitivity analysis, parameter identification, and controller tuning tasks, which can require hundreds or thousands of simulations. In this work, we first develop a high-fidelity model of a production sports utility vehicle in Adams/Car. Single-link equivalent kinematic quarter-car (SLEKQ, pronounced “sleek”) models for the front and rear suspensions are then developed in MapleSim. To avoid the computational complexity associated with introducing bushings or kinematic loops, all suspension linkages are lumped into a single unsprung mass at each corner of the vehicle. The SLEKQ models are designed to replicate the kinematic behaviour of a full suspension model using lookup tables or polynomial functions, which are obtained from the high-fidelity Adams model in this work. The predictive capability of each SLEKQ model relies on the use of appropriate parameters for the nonlinear spring and damper, which include the stiffness and damping contributions of the bushings, and the unsprung mass. Homotopy optimization is used to identify the parameters that minimize the difference between the responses of the Adams and MapleSim models. Finally, the SLEKQ models are assembled to construct a reduced 10-degree-of-freedom model of the full vehicle, the dynamic performance of which is validated against that of the high-fidelity Adams model using four-post heave and pitch tests.

Go to article

Authors and Affiliations

Andrew Hall
Thomas Uchida
Francis Loh
Chad Schmitke
John Mcphee
Download PDF Download RIS Download Bibtex

Abstract

A new approach to calculations based on the modal synthesis method is proposed for the evaluation of structural and dry-friction damping effects on self-excited vibrations due to aeroelastic instability in bladed turbine wheels. The method described herein is used to study dry-friction damping of self-excited vibration of an industrial turbine wheel with 66 blades. For evaluating damping effects, the blade couplings are applied to this particular turbine wheel. Therefore, neighbouring blades are interconnected by rigid arms that are fixed on one side to one blade and are in frictional contact on their free side with the other blade. Due to relatively normal motions in contacts, the prescribed contact forces vary over time. The aerodynamic excitation arises from the spatially periodical flow of steam through the stator blade cascade. In this paper, we attempt to model flow-induced instabilities with the Van der Pol model linked to relative motion between neighbouring blades. The proposed modal synthesis method as ROM is a computationally efficient solution allowing substantial parametrization. The effect of the angles of contact surfaces on the wheel dynamics and on the level of the self-excitation suppression will be discussed herein.
Go to article

Authors and Affiliations

Luděk Pešek
1
ORCID: ORCID
Pavel Šnábl
1
Chandra Shekhar Prasad
1

  1. Institute of Thermomechanics of the CAS, v. v. i., Dolejškova 1402/5, 182 00 Praha 8, Czech Republic

This page uses 'cookies'. Learn more