Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 7
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

Geomechnical model testing has been widely applied as a kind of research technique in underground engineering problems. However, during the practical application process, due to the influence of many factors, the desired results cannot be obtained. In order to solve this problem, based on the measurement requirements of the model test, combined with FBG(Fiber Bragg Grating) sensor technology and traditional measurement methods, an FBG monitoring system, Micro-multi-point displacement test system, resistance strain test system and surrounding rock pressure monitoring system are developed. Applying the systems to a model test of the tunnel construction process, the displacement in advance laws of tunnel face, radial displacement distribution laws and surrounding rock pressure laws are obtained. Test results show that a multivariate information monitoring system has the advantage of high precision, stability and strong anti-jamming capability. It lays a solid foundation for the real-time data monitoring of the tunnel construction process model test.

Go to article

Authors and Affiliations

Q. Liu
J. Chen
L. Wei
P. Huang
Y. Luo
X. Pu
Download PDF Download RIS Download Bibtex

Abstract

The analysis of changes in the mechanical properties of wooden mining cribs under the influence of different types of exploitation loads is the question for which deals with many domestic and abroad research centers deal with. High The high interest in this subject results from the increase of the conducted depth exploitation, which contributes to the increase in both the vertical pres-sure and the complexity of geological – mining conditions and in- the intensification of natural hazards. Another reason is the tendency of decreasing the thickness of the exploited ores deposits. Wooden crib support is used Both both in underground ore, hard coal and salt mining is used wooden crib support. Mining cribs with various configurations are especially useful for the reinforcement of excavations workings behind the front and for further strengthen of the crossings. In particular, additional reinforcement support in the form of wooden cribs (pile supporting), which shall be left empty or filled with waste rock is applied in the ore mining in places where found extended rooms or drifts are found or in places with degraded roof conditions, applies additional reinforcement support in the form of wooden cribs (pile supporting), which shall be left empty or filled with waste rock. During underground ex-ploitation is produced waste Waste rock, which comes from the access, prepar-atory excavations and from ongoing field of exploitation is produced during underground exploitation. In the case of the underground exploitation of cop-per ore, waste rock is used to fill voids after exploitation as rock stowing. It is also used for filling mining wooden cribs, as an artificial support and for harder transportation roads. This paper presents the results of the laboratory strength tests performed on models of four-point timber cribs, built with beams set horizontally, at the ge-ometrical scale of 1:10. In the laboratory research Research wooden cribs models with size 200 × 200 × 200 mm and 100 × 100 × 100 mm were used in the laboratory. The paper describes the maximum loading capacity of the cribs consisted consisting only of beams and filled with waste rocks. In addition, a vertical and appropriate strain of cribs at maximum force was shown. On the basis of laboratory research it was found that the use of the same number of timbers and the management of waste rocks, the filling of the four-point cribs with the waste rocks allowed several times to increase its support to be increased several times.

Go to article

Authors and Affiliations

Krzysztof Skrzypkowski
Download PDF Download RIS Download Bibtex

Abstract

Rising technical standards of customers, legal requirements and the trend to minimize maintenance effort raise the thermal, mechanical and tribological loads on components of combustion engines. In this regard, emphasis is laid on improving the piston ring - cylinder liner tribosystem, one with the highest energy losses. An efficient performance has to be guaranteed during its lifetime. Tribological investigations could be carried out on engine test benches, but they are highly cost-intensive and time-consuming. Therefore, a damage-equivalent test methodology was developed with the analogous tribological model, "ring-on-liner". The research was carried out under two characteristic operating conditions. One with a "standard" operating system, modelled in line with ideal lubrication conditions, and the other "extreme abrasive" operating system, typical to a system running on a lubricant contaminated by abrasive particles. To optimize the tribological loading capacity of the cylinder liner, with focus on these two operating conditions, numerous nitride coatings have been investigated. The key aspects being seizure resistance, running-in characteristics and long term wear behaviour.

Go to article

Authors and Affiliations

Jürgen Schiffer
István Gódor
Florian Grün
Wilfried Eichlseder
Download PDF Download RIS Download Bibtex

Abstract

The methane hazard is one of the most dangerous phenomena in hard coal mining. In a certain range of concentrations, methane is flammable and explosive. Therefore, in order to maintain the continuity of the production process and the safety of work for the crew, various measures are taken to prevent these concentration levels from being exceeded. A significant role in this process is played by the forecasting of methane concentrations in mine headings. This very problem has been the focus of the present article. Based on discrete measurements of methane concentration in mine headings and ventilation parameters, the distribution of methane concentration levels in these headings was forecasted. This process was performed on the basis of model-based tests using the Computational Fluid Dynamics (CFD). The methodology adopted was used to develop a structural model of the region under analysis, for which boundary conditions were adopted on the basis of the measurements results in real-world conditions. The analyses conducted helped to specify the distributions of methane concentrations in the region at hand and determine the anticipated future values of these concentrations. The results obtained from model-based tests were compared with the results of the measurements in realworld conditions. The methodology using the CFD and the results of the tests offer extensive possibilities of their application for effective diagnosis and forecasting of the methane hazard in mine headings.

Go to article

Authors and Affiliations

Jarosław Brodny
Magdalena Tutak
Download PDF Download RIS Download Bibtex

Abstract

The subject of this paper is a real stabilising and tracking control system-namely, the tank gun horizontal stabiliser. The simulation investigations of the influence of regulation potentiometers settlings on stabilisation exactness and transient processes quality were carried-out using a verified mathematical model of the system. The author analysed the possibilities of improving performance characteristics of the stabiliser via altering of feedback's gain coefficients as well as the influence of disturbing inputs amplitude and frequency (propagated from the hull on the gunturret) on stabilisation exactness of a given position. In the result of model investigations, it was found that it would be impossible to improve significantly the stabiliser performance quality with its present structure. For this reason, one investigated the possibilities of adding new feedbacks and their influence on the stabilisation quality. The introduced feedbacks improved performance parameters of the stabiliser by about thirty to fifty percent.
Go to article

Authors and Affiliations

Krzysztof M. Papliński
Download PDF Download RIS Download Bibtex

Abstract

The subject of the wind tunnel tests is a steel chimney 85 m high of cylindrical – type structure with a grid-type curtain structure situated at its upper part. The model of the upper part of the chimney made in the scale of 1:19 was equipped with 3 levels of wind pressure measurement points. Each level contained 24 points connected with pressure scanners. On the base of the pressure measurements, both mean and instantaneous aerodynamic drag and side force coefficients were determined. Next wind gust factors for these two wind action components were determined. Moreover, for each pressure signal Fast Fourier Transform was done. Mean wind action components were also determined using stain gauge aerodynamic balance. Obtained results make possible to conclude that the solution applied in the upper part of the designed chimney is correct from building aerodynamics point of view. Some minor vortex excitations were observed during model tests of the upper part of the chimney. The basic dynamic excitation of this part of the chimney is atmospheric turbulence.
Go to article

Bibliography



[1] Zdravkovich M.M., “Review and classification oof various aerodynamic and hydrodynamic means for suppressing vortex shedding”. J.Wind Eng. Ind. Aerodyn., 7(2): pp. 145-189, 1981.
[2] Arunachalam, S., & Lakshmanan, N. (2015). “Across-wind response of tall circular chimneys to vortex shedding”. Journal of Wind Engineering and Industrial Aerodynamics, 145, pp. 187–195, https://doi.org/10.1016/j.jweia.2015.06.005.
[3] Wang, L., & Fan, X. (2019). “Failure cases of high chimneys: A review”. Engineering Failure Analysis, 105, pp. 1107–1117, https://doi.org/10.1016/j.engfailanal.2019.07.032.
[4] Vickery, B. J., & Basu, R. I., “The response of reinforced concrete chimneys to vortex shedding”. Engineering Structures, 6(4), pp. 324–333, 1974
[5] Flaga A., “Wind vortex-induced excitation and vibration of slender structures-single structure of circular cross-section normal to flow”. Monograph No. 202. Cracow University of Technology, Cracow 1996.
[6] Lipecki, T., & Flaga, A. (2013). “Vortex excitation model. Part I. mathematical description and numerical implementation”. Wind and Structures, 16(5), pp. 457–476.
[7] Lipecki, T., & Flaga, A. (2013). “Vortex excitation model. Part II. application to real structures and validation”. Wind and Structures, 16(5), pp. 477–490, https://doi.org/10.12989/was.2013.16.5.477.
[8] Brownjohn, J. M. W., Carden, E. P., Goddard, C. R., & Oudin, G. (2010). “Real-time performance monitoring of tuned mass damper system for a 183 m reinforced concrete chimney”. Journal of Wind Engineering and Industrial Aerodynamics, 98(3), pp. 169–179, https://doi.org/10.1016/j.jweia.2009.10.013.
[9] Christensen, R. M., Nielsen, M. G., & Støttrup-Andersen, U. (2017). “Effective vibration dampers for masts, towers and chimneys”. Steel Construction, 10(3), pp. 234–240, https://doi.org/10.1002/stco.201710032.
[10] Belver, A. V., Ibán, A. L., & Lavín Martín, C. E. (2012). “Coupling between structural and fluid dynamic problems applied to vortex shedding in a 90m steel chimney”. Journal of Wind Engineering and Industrial Aerodynamics, 100(1), pp. 30–37. .
[11] Verboom, G. K., & van Koten, H. (2010). “Vortex excitation: Three design rules tested on 13 industrial chimneys”. Journal of Wind Engineering and Industrial Aerodynamics, 98(3), pp. 145–154, https://doi.org/10.1016/j.jweia.2009.10.008.
[12] Kawecki, J., & Żurański, J. A. (2007). ”Cross-wind vibrations of steel chimneys – A new case history”. Journal of Wind Engineering and Industrial Aerodynamics, 95(9–11), pp. 1166–1175.
[13] Lupi, F., Höffer, R., & Niemann, H.-J. (2021). “Aerodynamic damping in vortex resonance from aeroelastic wind tunnel tests on a stack”. Journal of Wind Engineering and Industrial Aerodynamics, 208, pp. 104–438.
[14] Lupi, F., Niemann, H.-J., & Höffer, R. (2017). “A novel spectral method for cross-wind vibrations: Application to 27 full-scale chimneys”. Journal of Wind Engineering and Industrial Aerodynamics, 171, pp. 353–365, https://doi.org/10.1016/j.jweia.2017.10.014.
[15] Rahman, S., Jain, A. K., Bharti, S. D., & Datta, T. K. (2020). “Comparison of international wind codes for across wind response of concrete chimneys”. Journal of Wind Engineering and Industrial Aerodynamics, 207, pp. 104–401.
[16] Ruscheweyh H., “Dynamische Windwirkung an Bauwerken. Band 2: Praktische Anwendungen. Bauverlag”. Wiesbaden und Berlin, 1982.
[17] Blevins R.D., “Flow-induced vibration. Second edition”. Van Nostrand Reinhold, New York 1990.
[18] Flaga A., “Wind engineering – fundamentals and applications” (in Polish), Arkady, Warsaw (2008).
Go to article

Authors and Affiliations

Andrzej Flaga
1
ORCID: ORCID
Renata Kłaput
1
ORCID: ORCID
Łukasz Flaga
1
ORCID: ORCID
Piotr Krajewski
1
ORCID: ORCID

  1. Cracow University of Technology, Faculty of Civil Engineering, Wind Engineering Laboratory, Jana Pawła II 37/3a, 31-864 Cracow
Download PDF Download RIS Download Bibtex

Abstract

This paper reviews latest developments of substructures for offshore wind turbines focusing on investigations and applications of hybrid foundations. Model tests and numerical analyses were used to simulate the loading of hybrid piles in sand. The results of pile-soil interaction were investigated to confirm the changes in soil stiffness around the hybrid monopile head. The mechanism and factors affecting the change in lateral stiffness of the hybrid foundation were explained by analysing p–y curves for M+H loading conditions in sand. Based on this research, a new shape of p–y curves for hybrid monopiles was established and a method for determining key parameters was proposed. The effectiveness of new p–y curves was verified by comparing back-calculated results with those from numerical simulations. The conducted tests confirmed that the hybrid monopile displacement is 30–50% smaller when compared to a standard monopile with similar dimensions. The gained experiences can be useful for designers and researchers to enhance the design of foundations for offshore wind turbines.
Go to article

Authors and Affiliations

Krzysztof Trojnar
1
ORCID: ORCID

  1. Rzeszów University of Technology, Faculty of Civil and Environmental Engineering and Architecture, al. Powstanców Warszawy 12, 00-959 Rzeszów, Poland

This page uses 'cookies'. Learn more