Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 2
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

Safe mine operations and optimal economical decision making in the context of lignite resources require an adequate level of knowledge about the spatial distribution of critical attributes in terms of geometry and quality in the deposit. Therefore, ore body models are generated using different approaches in geostatistics, depending on the problem to be solved. In this article the analysis of geostatistical methods used for deposits modeling has been presented. Based on exploration data concerning caloric value Q, models of one exemplary lignite deposit has been made. Two models of deposit were prepared using two different methods: ordinary kriging (OK) and sequential Gaussian conditional simulation (SGSIM). Different models of the same deposit were analyzed and compared with source data using criterion of fidelity to statistical attributes like: mean value, variance, statistical distribution. Models, which have been created based on exploration data, were compared with in-situ data gained from survey activities in the exploitation process. As a result of comparison correlation factor and measures of deviations were computed: average relative error, absolute relative error. Models were compared with in situ data, considering statistical features and local variability as well. In conclusion, the study gives valuable information into the benefits of using certain geostatistical approaches for variable tasks and problems in the lignite deposits design process. For the assessment of average values of deposit parameters ordinary kriging provides appropriate effects. Geostatisical simulation (e.g. sequential Gaussian simulation - SGSIM) provides much more relevant information for tasks connected to probability (or risk) of defined threshold exceedences than ordinary kriging. Models made with simulation method are characterized by high fidelity of spatial distribution in comparison to source data.

Go to article

Authors and Affiliations

Wojciech Naworyta
Jörg Benndorf
Download PDF Download RIS Download Bibtex

Abstract

The paper presents the analysis of IT tools selection to develop a system of deposits geological modelling as well as production designing and scheduling in a hard coal mine. The presented concept creates a subject-matter foundation of the solution supporting the decision making system in the field of production activities performance, with the use of IT solutions and monitoring of end product quality, implemented under the paradigm of so-called Intelligent Mine.
A technological dialogue carried out by questionnaire surveys, supported with experts’ opinions, was applied to select the software for designing a system of deposit modelling, and for designing and scheduling of mining operations. Questionnaires originated based on presentations, covering the functionality in the field of geological data gathering, developing a geological spatial model of a bedded deposit, as well as designing and scheduling. The presented solutions were next evaluated, via questionnaires, by the employees of the company. In addition, 4 groups of criteria were prepared: technical (questionnaires), technical (experts), business, and IT, based on which the final evaluation was carried out. Ultimately, Solution 2 was selected as that, which to the highest degree satisfied technical, business, and IT requirements of the planned system.
The indicated IT solution was implemented and became one of basic tools for modelling hard coal deposits, an also for designing and scheduling of the mining operations in the company.
Go to article

Authors and Affiliations

Artur Dyczko
1
ORCID: ORCID

  1. Mineral and Energy Economy Research Institute, Polish Academy of Sciences, Kraków, Poland

This page uses 'cookies'. Learn more