Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 6
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

‘Hard’ and ‘soft’ methods in analyses of territorial structures’. This article refers to two distinct approaches to investigations of territorial structures and their changes: the ‘intuitive’ of ‘soft’ approach and a more rigid, formalized or ‘hard’ one. The examples of analyzing the regional patterns in Poland over a almost 40 year span are called to illustrate these relations between two methodological standpoints. The conclusion states that both of them are valid and useful, however their strengths can be fully exposed when both are applied in an comprehensive way, supporting each other in a difficult process of investigation multidimensional and dynamic changes of the social territorial systems.
Go to article

Authors and Affiliations

Grzegorz Gorzelak
Download PDF Download RIS Download Bibtex

Abstract

The purpose of the work was to determine the relationship between the of the water quality parameters in an artificial reservoir used as cooling ponds. Multivariate methods, cluster analysis and factor analysis were applied to analyze eighteen physico-chemical parameters such as air and water temperature, dissolved oxygen concentration, visibility of the Secchi disk, concentrations of total nitrogen, ammonium, nitrate, nitrite, total phosphorus, phosphate, concentrations of calcium, magnesium, chlorides, sulfates and total dissolved salts, pH, chemical oxygen demand and electric conductivity from 2002-2017 to investigated cooling water discharge. Hierarchical cluster analysis (CA) allowed identified five different clusters that reflect the different water quality characteristics of the water system. Similar results were obtained in exploratory factor analysis, five factors were obtained with 65.96% total variance. However, confirmatory factor analysis showed that four latent variables: salinity, temperature, eutrophication, and ammonia provide better fit to the data than a five-factor structure. Correlations between latent variables temperature, eutrophication and ammonia show a significant effect of temperature on the transformation of nitrogen and phosphorus compounds.
Go to article

Bibliography

  1. Arsonists, G.B., Stow, C.A., Steinberg, L.J., Kenney M.A., Lathro, R.C., McBride, S.J. & Reckhow, K.H. (2006). Exploring ecological patterns with structural equation modeling and Bayesian analysis. Ecological Modelling, 192, pp. 385–409. DOI:10.1016/j.ecolmodel.2005.07.028
  2. Baran, A., Tarnowski M., Urbański K., Klimkowicz-Pawlas A. & Spałek I. (2017). Concentration, sources and risk assessment of PAHs in bottom sediments, Environmental Science and Pollution Research, 24, pp. 23180–23195. DOI 10.1007/s11356-017-9944-y
  3. Bloemkolk, J.W., van der Schaaf, R.J. (1996). Design alternatives for the use of cooling water in the process industry: minimization of the environmental impact from cooling systems. Journal of Cleaner Production 4(1), pp. 21-27.
  4. Boyacioglu, H. & Boyacioglu, H. (2018). Application of environmetric methods to investigate control factors on water quality on water quality. Archives of Environmental Protection. 43 (3) pp. 17–23. DOI: 10.1515/aep-2017-0026
  5. Boyacioglu, H. & Boyacioglu, H. (2018) Environmental Determinants of Surface Water Quality Based on Environmetric Methods. Environment and Ecology Research. 6(2), pp. 120-124. DOI: 10.13189/eer.2018.060204
  6. Choiński, A. & Ptak, M. (2013). Variability of thermals and water levels in Konin lakes as a result of the activity of the «Konin» and «Pątnów» power plants. Науковий вісник Східноєвропейського національного університету імені Лесі Українки РОЗДІЛ І. Фізична і конструктивна географія. 16 (265), pp. 31-40 (in Polish). http://www.esnuir.eenu.edu.ua/bitstream/123456789/11181/1/5.pdf
  7. Conclusions from the forecast analysis for the energy production sector – annex no. 2 to Poland's energy policy until 2040 (PEP 2040 – ver 2.1), Ministry of Energy Warsaw 2019 (in Polish). https://www.gov.pl/attachment/cff9e33d-426a-4673-a92b-eb4fb0bf4a04
  8. Doria, M.F, Pidgeon, N. & Hunter, P.(2005). Pe.2005.0245rception of tap water risks and quality: a structural equation model approach. Water Science & Technology, 52 (8) pp. 143–149. DOI:10.2166/wst.2005.0245
  9. Dragan, D. & Topolŝek, D. (2014). Introduction to Structural Equation Modeling: Review, Methodology and Practical Applications. The International Conference on Logistics & Sustainable Transport, 19–21 June 2014 Celje, Slovenia
  10. Dyer, K., Holmes, P., Roast S.,. Taylor, C.J.L. & Wicher, A. (2017). Challenges in the management and regulation of large cooling water discharges. Estuarine, Coastal and Shelf Science, 190, pp. 23-30. DOI: 10.1016/j.ecss.2017.03.027
  11. European Environment Agency, (2018). Water abstraction by sector, EU, European Environment Agency https://www.eea.europa.eu/data-and-maps/daviz/water-abstraction-by-sector-eu-2/download.table
  12. Fan, Y., Chen, J., Shirkey, G., John, R., Susie, R. Wu., S.R., Park, H. & Shao, C. (2016). Applications of structural equation modeling (SEM) in ecological studies: an updated review. Ecological Processes 5, 19. DOI 10.1186/s13717-016-0063-3
  13. Fox J., Nie Z. & ,Byrnes, J. (2020). Package ‘sem’. https://cran.r-project.org/web/packages/sem/sem.pdf
  14. Gao, C., Yan, J., Yang, S. & Tan G. (2011). Applying Factor Analysis to Water Quality Assessment: A Study Case of Wenyu River [In] S. Li (Ed.): Nonlinear Mathematics for Uncertainty and its Applications, 2011, Springer-Verlag Berlin Heidelberg , pp. 541–547. ISBN 978-3-642-22832-2. DOI 10.1007/978-3-642-22833-9
  15. Helena, B., Pardo, R., Vega, M., Barrado, E., Fernandez, J.M.& Fernandez, L. (2000). Temporal evolution of groundwater analysis. Water Research 34 (3), pp. 807-16. DOI: 10.1016/S0043-1354(99)00225-0
  16. Hossain, M.G., Selim Reza, A.H.M. & Lutfun-Nessa, M. (2013). Factor and cluster analysis of water quality data of the groundwater wells of Kushtia, Bangladesh: Implication for arsenic enrichment and mobilization. Journal of the Geological Society of India, 81, pp. 377–384. DOI: 10.1007/s12594-013-0048-0
  17. Jabłońska-Czapla, M., Szopa, S., Zerzucha, P., Łyko, A. & Michalski, R. (2015). Chemometric and environmental assessment of arsenic, antimony, and chromium speciation form ocurrence in a water reservoir subjected to thermal anthropopressure. Environmental Science and Pollution Research 22, pp.15731–15744. DOI: 10.1007/s11356-015-4769-z
  18. Jabłońska, M., Kostecki, M., Szopa, S., Łyko, A. & Michalski, R. (2012). Speciation of Inorganic Arsenic and Chromium Forms in Selected Water Reservoirs of Upper Silesia. Ochrona Środowiska, 34(3), pp. 25–32. (in Polish)
  19. Jancewicz, A., Dmitruk, U., Sosnicki, L. & Tomczuk, U. (2012). Influence of Land Development in the Drainage Area on Bottom Sediment Quality in Some Dam Reservoirs. Ochrona Środowiska 34(4), pp. 29–34.(In Polish)
  20. Johnson, R.A. & Wichern, D.W. (2007). Applied Multivariate Statistical Analysis, Pearson Education, Inc. 6th ed. ISBN 0-13-187715-1
  21. Johst M. & Rothsteinn B., (2014). Reduction of cooling water consumption due to photovoltaic and wind electricity feed-in. Renewable and Sustainable Energy Reviews 35, 311–317 DOI: 10.1016/j.rser.2014.04.029
  22. Jolliffe I.T. (2002). Principal Component Analysis, Second Edition Springer Verlag. ISBN 0-387-05442-2
  23. Kannel P.R., Lee S., Kanel S.R. & Khan S.P. (2007). Chemometric application in classification and assessment of monitoring locations of an urban river system, Analytica Chimica Acta 582, pp. 390–399. DOI: 10.1016/j.aca.2006.09.006
  24. Kim, S.E., Seo, I.W. & Choi S.Y. (2017). Assessment of water quality variation of a monitoring network using exploratory factor analysis and empirical orthogonal function. Environmental Modelling & Software 94, pp. 21-35. DOI: 10.1016/j.envsoft.2017.03.035
  25. Koczorowska, R. (2001). The impact of a fuel-energy complex on selected ]elements of water balance [In] German, K. & Balon, J. (Eds) Przemiany środowiska przyrodniczego Polski a jego funkcjonowanie, IGiGP UJ, Kraków, ss. 814., pp. 158-163. (in Polish) https://denali.geo.uj.edu.pl/publikacje,000025?&page=start&menu=3&nr=000025_018&brf=summary#000025_018
  26. Korkmaz, S., Goksuluk, D. & Zararsiz, G. (2020). Package ‘bestNormalize’ https://cran.r-project.org/web/packages/MVN/MVN.pdf
  27. Kostecki, M. (2005) Specificity of the thermal conditions of the "Rybnik" water reservoir as an effect of heated waterseated discharge, Problemy Ekologii 9 (3) 151-161 (in Polish)
  28. Kostecki, M. & Kowalski, E. (2007). Spatial arrangement of heavy metals in the dam-reservoir sediments in the conditions of anthropomixion, Archives of Environmental Protection, 3, pp. 67–81.
  29. Kostecki, M. (2007). Bioaccumulation of heavy metals in selected elements of trophic chain of anthropogenic reservoirs in the aspect of environmental protection and economical function. Institute of Environmental Engineering of the Polish Academy of Sciences, Works & Studies, 71, pp. 87. (in Polish)
  30. Kowalska-Musiał M. & Ziółkowska, A. (2013). Factor analysis in investigating relation structure in relation marketing. Zeszyt Naukowy Wyższej Szkoły Zarządzania i Bankowości w Krakowie. (in Polish)
  31. Kowalski, E., Mazierski, J. (2008). Effects of cooling water discharges from a power plant on reservoir water quality. Oceanological and Hydrobiological Studies International Journal of Oceanography and Hydrobiology, 37, pp. 107- 118. DOI: 10.2478/v10009-008-0001-5
  32. Kumar, J.I.N. (2009). Assessment of spatial and temporal fluctuations in water quality of a tropical permanent estuarine system - Tapi, West Coast India. Applied Ecology and Environmental Research 7(3), pp. 267-276. DOI: 10.15666/aeer/0703_267276
  33. Liu, C.W., Lin, K.H. & Kuo, Y.M., (2003). Application of factor analysis in the assessment of groundwater quality in a blackfoot disease area in Taiwan. The Science of the Total Environment 313, pp. 77–89. DOI: 10.1016/S0048-9697(02)00683-6
  34. Loska,K., Korus, I. & Wiechuła, D. (2009). Arsenic speciation in Rybnik reservoir. Architecture Civil Engineering Environmen, 2(3) pp. 109-116.
  35. Loska, K. , Wiechuła, D. , Pęciak, G. (2003a) Contamination of the arsenic in the bottom sediment of the Rybnik Reservoir. Problemy Ekologii 7 (1), pp. 29-32 (in Polish))
  36. Loska, K., Korus, I., Pelczar J., Wiechuła D. (2005) Analysis of spatial distribution of arsenic in bottom sediments of the Rybnik Reservoir. Gospodarka Wodna 65(3), pp. 104-107. (in Polish)
  37. Loska,.K., Wiechuła, D. (2003b). Application of principal component analysis for the
  38. estimation of source of heavy metal contamination in surface sediments from the Rybnik Reservoir. Chemosphere 51, pp. 723–733. DOI: 10.1016/S0045-6535(03)00187-5
  39. Loska K., Wiechuła D., Cebula J. (2000) Changes in the Forms of Metal Occurrence in Bottom Sediment under Conditions of Artificial Hypolimnetic Aeration of Rybnik Reservoir, Southern Poland. Polish Journal of Environmental Studies 9(6), pp. 523-530.
  40. Loska K., Cebula J., Pelczar J., Wiechuła D. & Kwapuliński J. (1997). Use of enrichment, and contamination factors together with geoaccumulation indexes to evaluate the content of Cd, Cu, and Ni in the Rybnik water reservoir in Poland. Water, Air, & Soil Pollution, 93, pp. 347–365. DOI: 10.1023/A:1022121615949
  41. Loska, K., Wiechula D., Pelczar J. & Kwapulinski J. (1994) Occurrence of heavy metals in bottom sediments of a heated reservoir [the Rybnik Reservoir, southern Poland]. Acta Hydrobiologica. 36(3), pp. 281-295
  42. Loska K., Wiechuła D., Cebula J. & Kwapulinski J (2001) Occurrence of sodium, potassium and calcium in the Rybnik Reservoir. Ochrona Powietrza i Problemy Odpadów, vol. 35 (6), pp. 229–234. (in Polish)
  43. Marsh, H. W., Muthén, B., Asparouhov, T., Lüdtke, O., Robitzsch, A., Morin, A. J. S., & Trautwein, U. (2009). Exploratory structural equation modeling, integrating CFA and EFA: Application to students' evaluations of university teaching. Structural Equation Modeling, 16(3), 439-476. DOI:10.1080/10705510903008220
  44. Masduqi, A., Endah, N., Soedjono, E. S., Hadi, W. (2010) Structural equation modeling for assessing of the sustainability of rural water supply systems. Water Science & Technology: Water Supply—WSTWS | 10.5 pp. 815 – 823. DOI: 10.2166/ws.2010.339
  45. Mustapha, A. & Aris, A.Z. (2012). Multivariate Statistical Analysis and Environmental Modeling of Heavy Metals Pollution by Industries. Polish Journal of Environmental Studies 5, pp.1359-1367.
  46. OpenStreetMap Foundation (OSMF) https://www.openstreetmap.org/copyright/en
  47. Petersen, W., Bertino, L., Callies, U. & Zorita E. (2001). Process identification by principal component analysis of river water-quality data, Ecological Modelling 138, pp. 193 – 213.
  48. Peterson R.A. (2020). Package ‘bestNormalize’
  49. https://cran.r-project.org/web/packages/bestNormalize/bestNormalize.pdf
  50. R Core Team, (2020). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/.
  51. Rajagopal, S., Venugopalan, V.P. & Jenner H.A., (2012). Cooling Water Systems: Efficiency vis-à-vis Environment. [In] Rajagopal, S., Jenner, H.A. & Venugopalan V.P. (Eds) Operational and Environmental Consequences of Large Industrial Cooling Water Systems, pp. 455-461
  52. Reference Document on the application of Best Available Techniques to Industrial Cooling Systems. European Commission, December 2001. http://eippcb.jrc.ec.europa.eu/reference/BREF/cvs_bref_1201.pdf
  53. Revelle W. (2020) Package ‘psych’ https://cran.r-project.org/web/packages/psych/psych.pdf
  54. Rodrigues, P.M.S.M, Rodrigues, R.M.M., Costa, B.H.F., Tavares Martins, A.A.A.L., Estaves da Silva, J.C.G. (2010) Multivariate analysis of the water quality variation in the Serra da Estrela (Portugal) Natural Park as a consequence of road deicing with salt, Chemometrics and Intelligent Laboratory Systems 102, pp. 130–135. DOI: 10.1016/j.chemolab.2010.04.014
  55. Ryberg, K. R. (2017) Structural Equation Model of Total Phosphorus Loads in the Red River of the North Basin, USA and Canada. Journal of Environmental Quality. 46 pp. 1072-1080. DOI: 10.2134/jeq2017.04.0131
  56. Rzętała, M. (2008). Operation of water reservoirs and the course of limnic processes in diverse conditions anthropopression on the example of the Upper Silesian region. Katowice: University of Silesia Publishing House.(in Polish)
  57. Simeonov, V. Stratis, J.A. Samara, C., Zachariadis,G., Voutsa, D., Anthemidis, A., Sofoniou, M., Th. Kouimtzis, Th. (2003) Assessment of the surface water quality in Northern Greece, Water Research 37, pp. 4119–4124. DOI: 10.1016/S0043-1354(03)00398-1
  58. Singh, K.P., Malik, A., Mohan, D., Sinha, S., (2004) Multivariate statistical techniques for the evaluation of spatial and temporal variations in water quality of Gomti River (India) - a case study. Water Research 38, pp. 3980-3992. DOI: 10.1016/j.watres.2004.06.011
  59. Standard Methods for the Examination of Water and Wastewater (2017) 23rd Edition American Public Health Association, American Water Works Association, and Water Environment Federation. ISBN: 978-0-87553-287-5
  60. Statistical Yearbook of Republic of Poland, Warsaw, 2018. (in Polish)
  61. Vega, M., Pardo, R., Barrado, E. & Debán L. (1998). Assessment of seasonal and polluting effects on the quality of river water by exploratory data analysis, Water Research 32 pp. 3581-3592. DOI: 10.1016/S0043-1354(98)00138-9
  62. Viswanath, N.C., Kumar, P.G.D. & Ammad K.K. (2015). Statistical Analysis of Quality of Water in Various Water Shed for Kozhikode City, Kerala, India, Aquatic Procedia 4 pp. 1078 – 1085. DOI: 10.1016/j.aqpro.2015.02.136
  63. Wang, S.-W., Liu, C.-W. & Jang, C.-S. (2003). Factors responsible for high arsenic concentrations in two groundwater catchments in Taiwan. Applied Geochemistry, 22, pp. 460–47. DOI: 10.1016/j.apgeochem.2006.11.011
  64. Wiechuła, D., Loska, K. & Korus, I. (2005). Lead partitioning in the bottom sediment of Rybnik reservoir (southern Poland). Water, Air, & Soil Pollution 164, pp. 315–327.
  65. Widziewicz, K. & Loska, K. (2012) Multivariate statistical analyses on arsenic occurrence in Rybnik reservoir. Archives of Environmental Protection 38(2) pp.12-23. DOI: 10.2478/v10265-012-0014-8
  66. Wu, E.M.-Y., Tsai, C.C., Cheng, J.F., Kuo, S.L., Lu, W.T. (2014) The Application of Water Quality Monitoring Data in a Reservoir Watershed Using AMOS Confirmatory Factor Analyses, Environmental Modeling & Assessment 19, pp. 325–333. DOI 10.1007/s10666-014-9407-5
  67. Zemełka, G. & Szalinska, E. (2017). Heavy Metal Contamination of Sediments from Recreational Reservoirs of Urban Areas and its Environmental Risk Assessment, Engineering and Protection of Environment, 20(1), pp.131-145. DOI: 10.17512/ios.2017.1.10
Go to article

Authors and Affiliations

Jerzy Mazierski
1
Maciej Kostecki
1
ORCID: ORCID

  1. Institute of Environmental Engineering, Polish Academy of Sciences, Poland
Download PDF Download RIS Download Bibtex

Abstract

Analysis of groundwater quality in the alluvial aquifer of the lower Soummam Valley, North-East of Algeria, was realised through the application of multivariate statistical methods: hierarchical cluster analysis (HCA) in Q and R modes, factorial correspondence analysis (FCA), and principal component analysis (PCA), to hydrochemical data from 51 groundwater samples, collected from 17 boreholes during periods of June, September 2016 and March 2017. The objectives of this approach are to characterise the water quality and to know the factors which govern its evolution by processes controlling its chemical composition. The Piper diagram shows two hydrochemical facies: calcium chloride and sodium bicarbonate. Statistical techniques HCA, PCA, and FCA reveal two groups of waters: the first (EC, Ca2+, Mg2+, Cl–, SO42– and NO3–) of evaporitic origin linked to the dissolution processes of limestone rocks, leaching of saliferous soils and anthropogenic processes, namely contamination wastewater and agricultural activity, as well marine intrusion; and the second group (Na+, K+, and HCO3–) of carbonated origin influenced by the dissolution of carbonate formations and the exchange of bases. The thermodynamic study has shown that all groundwater is undersaturated with respect to evaporitic minerals. On the other hand, it is supersaturated with respect to carbonate minerals, except for water from boreholes F9, F14, and F16, which possibly comes down to the lack of dissolution and arrival of these minerals. The results of this study clearly demonstrate the utility of multivariate statistical methods in the analysis of groundwater quality.
Go to article

Authors and Affiliations

Messaoud Ghodbane
1
ORCID: ORCID
Lahcen Benaabidate
2
ORCID: ORCID
Abderrahmane Boudoukha
3
ORCID: ORCID
Aissam Gaagai
4
ORCID: ORCID
Omar Adjissi
5
ORCID: ORCID
Warda Chaib
4
ORCID: ORCID
Hani Amir Aouissi
4
ORCID: ORCID

  1. University of Mohamed Boudiaf, Faculty of Technology, Laboratory of City, Environment, Society and Sustainable Development, 166 Ichebilia, 28000, M’sila, Algeria
  2. University of Sidi Mohammed Ben Abdellah, Faculty of Sciences and Techniques, Laboratory of Functional Ecology and Environment Engineering, Fez, Morocco
  3. University of Batna 2, Laboratory of Applied Research in Hydraulics, Batna, Algeria
  4. Scientific and Technical Research Center for Arid Areas (CRSTRA), Biskra, Algeria
  5. University of Mohamed Boudiaf, Faculty of Technology, M’sila, Algeria
Download PDF Download RIS Download Bibtex

Abstract

Anestrus is essential to an unsuccessful pregnancy in dairy cows. One of the many factors that influences anestrus is the inactive ovary. To characterize in detail the plasma metabolic pro- file, anestrus cows suffering from inactive ovaries were compared with those with natural estrus. The Holstein cows 60 to 90 day postpartum in an intensive dairy farm were assigned into inactive ovaries groups (IO, n=20) and natural estrus group (CON, n=22) according to estrus signs and rectal palpation of ovaries. Plasma samples from two groups of cows were collected from the tail vein to screen differential metabolites using gas chromatography/mass spectrometry (GC/MS) techniques and multivariate statistical analysis and pathways. The results showed that 106 compounds were screened by GC/MS and 14 compounds in the IO group were decreased by analyzing important variables in the projection values and p values of MSA.Through pathway analysis, 14 compounds, mainly associated with carbohydrate metabolism and amino acid meta- bolism, were identified to results in IO, which may seriously affect follicular growth. Metabolo- mics profiling, together with MSA and pathway analysis, showed that follicular growth and development in dairy cows is related to carbohydrate and amino acid metabolism by a single or multiple pathway(s).

Go to article

Authors and Affiliations

C. Zhao
P. Hu
Y.L. Bai
C. Xia
Download PDF Download RIS Download Bibtex

Abstract

Currently, due to reduced water resources, there is a need to build reservoirs in Poland. Reservoirs perform important economic, natural and recreational functions in the environment, improve water balance and contribute to fl ood protection. In the construction of reservoirs, it is necessary to consider not only hydrological issues related to water quantity, but also its quality, silting, and many other factors. Therefore, the physiographic, hydrological, hydrochemical, and hydrogeological conditions of the projected reservoirs have to be taken into account to limit the potential negative eff ects of decisions to build them. In order to assess the suitability of eight projected small water retention reservoirs (to increase water resources in the Barycz River catchment in Lower Silesia and Greater Poland provinces, this article takes into account hydrological indicators (efficiency of the reservoir, operation time, dependence on the intensity of silting, and flood hazard indicator), water quality (phosphorus load and nitrogen load), hydrogeological conditions (type of geological substratum for the reservoir basin and filtration losses), and safety of the reservoir dam. To develop a theoretical model describing the regularities between the indicators, multivariate statistical techniques were used, including the Principal Component Analysis (PCA) and the Factor Analysis (FA). In order to assess the reservoirs, a synthetic indicator was developed to compare the reservoirs with each other in relation to the conditions. The Cluster Analysis (CA) was used for typological classification of homogeneous locations of projected small retention reservoirs. Own research procedure for identification of the most advantageous water reservoirs, with the use of multivariate statistical techniques, may be used as a tool supporting decision making in other facilities intended for implementation in provincial projects of small retention.
Go to article

Bibliography

1. Adamski, W., Gortat, J., Leśniak, E. & Żbikowski, A. (1986). Small water construction for the villages. Arkady, Warszawa (in Polish).
2. Bănăduc, D., Razvam, V., Marić, S., Dobre, A. & Bănăduc, A. (2018). Technical Solutions to Mitigate Shifting Fish Fauna Zones Impacted by Long Term Habitat Degradation in the Bistra Mărui River – Study Case, Transylvanian Review of Systematical and Ecological Research, 20(3). DOI: 10.2478/trser-2018-0021.
3. Bartnik, A. & Jokiel, P. (2007). Maximum outflows and flood indexes for European rivers, Water Management/Gospodarka Wodna, (1), pp. 28–32 (in Polish).
4. Baumgartner, M. T., Piana, P. A., Baumgartner, G. & Gomes, L. C. (2019). Storage or Run-of-river Reservoirs: Exploring the Ecological Effects of Dam Operation on Stability and Species Interactions of Fish Assemblages, Environmental Management, DOI: 10.1007/s00267-019-01243-x.
5. Bierman, P. & Steig, E.J. (1996). Estimating rates of denudation using cosmogenic isotope abundances in sediment, Earth Surface Processes and Landforms, 21(2). DOI: 10.1002/(SICI)1096-9837(199602)21:2125::AID-ESP511>3.0.CO;2-8.
6. Bogdał A., Kowalik, T. & Witoszek, K. (2015). Impact of the Goczałkowicki reservoir on changes in water quality in the Vistula River. Inżynieria Ekologiczna, 45, pp. 2015, 124–134, DOI: 10.12912/23920629/60605 (in Polish).
7. Bogdał A., Policht-Latawiec, A. & Kołdras, S. (2015). Changes of Water Quality Indices with Depth at Drinking Water Intake from Dobczyce Reservoir. Annual Set the Environment Protection, 17, pp. 1239–1258 (in Polish).
8. Boyacioglu, H. (2006). Surface water quality assessment using factor analysis. Water SA, 32(3), pp. 389–393. DOI: 10.4314/wsa.v32i3.5264.
9. Boyacioglu, H. (2014). Spatial differentiation of water quality between reservoirs under anthropogenic and natural factors based on statistical approach. Archives of Environmental Protection, 40(1), 41–50, DOI: 10.2478/Aep-2014-0002.
10. Boyacioglu, H., & Boyacioglu, H. (2008). Water pollution sources assessment by mul-tivariate statistical methods in the Tahtali Basin. Turkey, Environmental Geology, 54(2), 275–282, DOI 10.1007/s00254-007-0815-6.
11. Bus, A. & Mosiej, J. (2018). Water Quality Changes of Inflowing and Outlawing Water from Complex of Niewiadoma Reservoirs Located at Cetynia River. Annual Set The Environment Protection, 20, pp. 1793–1810 (in Polish).
12. Byczkowski, A. (1999). Hydrology, vol. 1, ed. 2. SGGW Publishing House, Warszawa (in Polish).
13. Carlson, R.E. & Simpson, J. (1996). A Coordinator’s Guide to Volunteer Lake Monitoring Methods. North American Lake Management Society.
14. Chłopek, D. (2018). Multi-criteria analysis of the possibility of implementing small water reservoirs in the Barycz river basin. Diploma thesis, Faculty of Environmental Engineering and Geodesy, Wrocław University of Environmental and Life Sciences, pp. 65 (in Polish).
15. Chongxun, M., Fanggui, L. Mei, Y., Rongyong, M. & Guikai, S. (2008), Risk analysis for earth dam overtopping, Water Science and Engineering, 1(2), pp. 76-87, DOI: 10.3882/j.issn.1674-2370.2008.02.008.
16. Ciepielowski, A. (1999). Basics of water management. Publisher SGGW, Warszawa, pp. 328 (in Polish).
17. Cupak, A., Wałęga, A. & Michalec, B. (2017). Cluster analysis in determination of hydrologically homogeneous regions with low flow, Acta Scientiarum Polonorum Formatio Circumiectus, 16(1), pp. 53–63. DOI: 10.15576/ASP.FC/2017.16.1.53
18. Cymes, I. & Glińska-Lewczuk, K. (2016). The use of Water Quality Indices (WQI and SAR) for multipurpose assessment of water in dam reservoirs. J. Elem., 21(4): 1211-1224, DOI: 10.5601/jelem.2016.21.2.1200.
19. Czamara, W., Czamara, A. & Wiatkowski, M. (2008). The use of predams with plants filters to improve water quality in storage reservoirs, Archives of Environmental Protection, 34, pp. 79-89.
20. Degoutte, G. (ed.). (2002). Small dams, guidelines for design, construction and monitoring. Cemagref Éditions and ENGREF (France), with French Committee on Large Dams.
21. Degórski, M. (2018). Circular economy – a new approach in the understanding of the human–environment relationship, [in:] Theoretical and application challenges of contemporary geography socioeconomic, P. Churski (ed.), Studia Komitetu Przestrzennego Zagospodarowania Kraju, Polska Akademia Nauk, Tom CLXXXIII, Warszawa, pp. 27-35 (in Polish).
22. Dodds, W.K. & Smith, V.H. (2016). Nitrogen, phosphorus, and eutrophication in streams, Inland Waters, 6(2), pp. 155-164, DOI: 10.5268/IW-6.2.909.
23. Dziewoński, Z. (1973). Agricultural storage reservoirs, PWN Publisher (in Polish).
24. DZMiUW Wrocław (2006). Small water retention program in the Lower Silesian Voivodship. Study prepared by Agricultural University of Wroclaw - Hydrological Process Modeling Center (in Polish).
25. EPA – Environmental Protection Agency (1974). An approach to a relative trophic index system for classifying lakes and reservoirs. Working Paper, 24.
26. FitzHugh, T. W., & Vogel, R. M. (2010). The impact of dams on flood flows in the United States, River Research and Applications, 27(10), pp. 1192–1215, DOI: 10.1002/rra.1417.
27. Gaupp, F., Hall, J., & Dadson, S. (2015). The role of storage capacity in coping with intra- and inter-annual water variability in large river basins, Environmental Research Letters, 10(12), 125001, DOI: 10.1088/1748-9326/10/12/125001.
28. GIOŚ (2018) Corine Land Cover – Land Cover / Land Use Database. Chief Inspec-torate for Environmental Protection (GIOŚ).
29. Grimard, Y. & Jones, H.G. (2011). Trophic Upsurge in New Reservoirs: A Model for Total Phosphorus Concentrations, Canadian Journal of Fisheries and Aquatic Sciences, 39(11), pp. 1473-1483, DOI: 10.1139/f82-199.
30. Gruss Ł. & Wiatkowski M. (2018). Rainfall models in small catchments in the context of hydrologic and hydraulic assessment of watercourses. ECO CHEM ENG A. 25(1): 19-27, DOI: 10.2428/ecea.2018.25(1)2.
31. Ignatius, A. R., & Rasmussen, T. C. (2016). Small reservoir effects on headwater wa-ter quality in the rural-urban fringe, Georgia Piedmont, USA, Journal of Hydrolo-gy: Regional Studies, 8, pp. 145–161, DOI: 10.1016/j.ejrh.2016.08.005.
32. Junakova, N. & Junak, J. (2017). Sustainable Use of Reservoir Sediment through Par-tial Application in Building Material, Sustainability, 9(5), DOI: 10.3390/su9050852. 33. Kajak, Z. (2001). Hydrobiology - limnology. Inland water ecosystems. PWN Publisher, Warszawa (in Polish).
34. Kałuża, T., Zawadzki, P., Mądrawski, J., Stasik, R. (2017). Analysis of impact of Strużyna reservoir modernization on groundwater level. Acta. Sci. Pol., Formatio Circumiectus, 16(3), 153–169 (in Polish).
35. Karimian, E., Modares, R., Soltani S., Eslamian S., Ostad-Ali-Askari, K., Vijay, P.S & Dalezios, N.R. (2018). Multivariate and Cluster Analysis of Hydrologic Indices: A Case Study of Karun Watershed, Khuzestan Province, Iran, International Journal of Research Studies in Science, Engineering and Technology, 5(2), pp. 4-13
36. Kasperek R., Wiatkowski M. & Czamara W. (2007). Assessment of sediment transport flowing into the Mściwojów water reservoir. Infrastructure and Ecology of Rural Areas, 4, 2, pp. 69-76 (in Polish).
37. Kasperek, R., Mokwa, M. & Wiatkowski, M. (2013). Modelling of pollution transport with sediment on the example of the Widawa River, Archives of Environmental Protection, 39(2), pp. 29-43, DOI: 10.2478/aep-2013-0017.
38. Khaba, L. & Griffiths, J.A. (2017). Calculation of reservoir capacity loss due to sedi-ment deposition in the `Muela reservoir, Northern Lesotho, International Soil and Water Conservation Research, 5 (2), pp. 130-140. DOI: 10.1016/j.iswcr.2017.05.005.
39. Kubicz, J., Lochynski,, P., Pawełczyk, A. & Karczewski, M. (2021). Effects of drought on environmental health risk posed by groundwater contamination. Chemosphere, 263, 128145, DOI: 10.1016/j.chemosphere.2020.128145.
40. Kostecki, M., Tytła, M., Kernert, J. & Stahl, K. (2017). Temporal and spatial variability in concentrations of phosphorus species under thermal pollution conditions of a dam reservoir – the Rybnik Reservoir case study, Archives of Environmental Protection, 43(3), pp. 42–52, DOI: 10.1515/aep-2017-0022.
41. Kowalewski, Z. (2008). Actions for small water retention undertaken in Poland. J. Water. Land. Dev. No. 12, pp. 155–167.
42. Kundzewicz, Z.W., Ulbrich, U., Brücher, T. et al. (2005). Summer Floods in Central Europe – Climate Change Track?, Natural Hazards, 36, 165–189. DOI: 10.1007/s11069-004-4547-6
43. KZGW (National Water Management Authority) 2017. Hydrographic Map of Poland. Available online: https://danepubliczne.gov.pl/dataset/komputerowa-mapa-podzialu-hydrograficznego-polski (accessed on: 05.12.2017).
44. Laacha, G. & Blöschl, G. (2006). A comparison of low flow regionalisation methods – catchment grouping, Journal of Hydrology, 323, pp. 193–214. DOI: 10.1016/j.jhydrol.2005.09.001.
45. Łabaz, B., Bogacz, A. & Kabała, C. (2014). Anthropogenic transformation of soils in the Barycz valley –conclusions for soil classification, Soil Science Annual, 65(3/2014), pp. 103-110. DOI: 10.1515/ssa-2015-0001.
46. Larinier, M. (2008). Fish Passage Experience at Small-Scale Hydro-Electric Power Plants in France, Hydrobiologia, 609(1). DOI: 10.1007/s10750-008-9398-9.
47. Lewis, S.E., Bainbridge, Z.T., Kuhnert, P.M., Sherman, B.S., Henderson, B., Dougall, C., Cooper, M. & Brodie, J.E. (2013). Calculating sediment trapping efficiencies for reservoirs in tropical settings: A case study from the Burdekin Falls Dam, NE Australia, Water Resources Research, 49(2), pp. 1017-1029. DOI: 10.1002/wrcr.20117.
48. Lindsey, C.R., Ghanashym, N., Spycher, N., Fairley, J.P., Dobson, P., Wood, T., McLing, T. & Conrad, M. (2018). Cluster analysis as a tool for evaluating the exploration potential of Known Geothermal Resource Areas, Geothermics, 72, pp. 358-370. DOI: 10.1016/j.geothermics.2017.12.009
49. Ling, T.Y., Soo, C-L, Liew, J-J., Nyanti, L, Sim, S.F. & Grinang, J. (2017). Application of multivariate statistical analysis in evaluation of surface river water quality of a tropical river J. Chemother., pp. 1-13, DOI: 10.1155/2017/5737452
50. Madeyski M., Michalec, B. & Tarnawski, M. (2008). Silting of small water reservoirs and quality of sediments, Infrastructure and Ecology of Rural Areas, 11 (monography; in Polish).
51. Maloney, T.E. (1979). Lake and Reservoir Classification Systems. United States Environmental Protection Agency.
52. Mansanarez, V., Westerberg, I.K., Lam, N. & Lyon, S.W. (2019). Rapid Stage‐Discharge Rating Curve Assessment Using Hydraulic Modeling in an Uncertainty Framework, Water Resources Research, 55(11). DOI: 10.1029/2018WR024176.
53. Marcinkowski, P., Piniewski, M., Kardel, I., Szczęśniak, M., Benestad, R.E., Sriniva-san, R., Ignar, S. & Okruszko, T. (2017). Effect of Climate Change on Hydrology, Sediment and Nutrient Losses in Two Lowland Catchments in Poland, Water, 9, 156, DOI: 10.3390/w9030156.
54. Markowska, J., Szalińska, W., Dąbrowska, J. & Brząkała, M. (2020). The concept of a participatory approach to water management on a reservoir in response to wicked problems. J. Environ. Manage. 259:109626. DOI: 10.1016/j.jenvman.2019.109626
55. Melo, D.C.D., Scanlon, B.R., Zhang, Z., Wendland, E. & Yin, L. (2016). Reservoir storage and hydrologic responses to droughts in the Paraná River basin, south-eastern Brazil, Hydrology and Earth System Sciences, 20, pp. 4673-4688, DOI: 10.5194/hess-20-4673-2016.
56. MGMiŻG, (2019a), Regulation of the Minister of Maritime Economy and Inland Navigation of 11 October 2019 on the classification of ecological status, ecological potential and chemical status and the method of classifying the status of surface water bodies as well as environmental quality standards for priority substances, OJ 2019, item 2149 (in Polish).
57. MGMiŻG, (2019b), Ministry of Maritime Economy and Inland Navigation. Assumptions for the Program for Combating Water Shortage for 2021-2027 with a perspective to 2030. Project, Warszawa, pp. 19 (in Polish).
58. Miąsik M., Koszelnik P. & Bartoszek L. (2014). Trophic water assessment of the small retention reservoirs Blizne and Cierpisz in the Podkarpacie Region (Subcarpathian Province), Limnol. Rev. , 14(, 4), pp. 181-186. DOI 10.1515/limre-2015-0008.
59. Michalec, B., Wałęga, A., Cupak, A., Michalec, A. & Połoska-Wróblel, A. (2016). Determination of the flow rate curve in the back section of water reservoirs in Zesławice. Acta Scientiarum Polonorum Formatio Circumiectus, 15(1), pp. 113–124.
60. Mioduszewski, W. (2014). Water management in rural areas in the light of new challenges. Wiadomości Melioracyjne i Łąkarskie, 1, pp. 2-9 (in Polish).
61. Mioduszewski, W. (2014). Small (natural) water retention in rural areas. J. Water. Land. Dev., No. 20 (I–III), pp. 19–29.
62. Mosisch, T.D. & Arthington, A. (2006). The impacts of power boating and water ski-ing on lakes and reservoirs, Lakes & Reservoirs Research & Management, 3(1), pp. 1-17, DOI: 10.1111/j.1440-1770.1998.tb00028.x.
63. Moss, B. (2007). The art and science of lake restoration, Hydrobiologia, 581, pp. 15-24. DOI: 10.1007/s10750-006-0524-2.
64. Myronidis, D., Fotakis, D., Ioannou, K. & Sgouropoulou, K. (2018). Comparison of ten notable meteorological drought indices on tracking the effect of drought on streamflow. Hydrological Science Journal, DOI: 10.1080/02626667.2018.1554285
65. Myronidis, M. & Ivanova, E. (2020). Generating Regional Models for Estimating the Peak Flows and Environmental Flows Magnitude for the Bulgarian-Greek Rhodope Mountain Range Torrential Watersheds, Water, 12, 784. DOI: 10.3390/w12030784
66. National Water Policy Project (2011) until 2030 (including the stage of 2016), Ministry of the Environment, National Water Management Authority, Warszawa, pp. 74 (in Polish).
67. O’Keeffe, J., Marcinkowski, P., Utratna, M., Piniewski, M., Kardel, I., Kundzewicz, Z.W. & Okruszko, T. (2019). Modelling Climate Change’s Impact on the Hydrology of Natura 2000 Wetland Habitats in the Vistula and Odra River Basins in Poland. Water, 11, 2191, DOI: 10.3390/w11102191.
68. Özdemir, Ö. (2016). Application of multivariate statistical methods for water quality assessment of Karasu Sarmisakli Creeks and Kizilirmak River in Kayseri, Turkey. Polish Journal of Environmental Studies, 25 (3), 1149.
69. Panek, T. & Zwierzchowski, J. (2013). Statistical methods of multivariate compara-tive analysis. Theory and applications, SGH Publishing House, Warszawa, pp. 400 (in Polish).
70. Paruch, A.M., Mæhlum, T. & Robertson, L. (2015). Changes in Microbial Quality of Irrigation Water Under Different Weather Conditions in Southeast Norway. Environ. Process. 2, pp. 115–124. DOI: 10.1007/s40710-014-0054-2
71. Pazdro, Z. & Kozerski, B. (1990). General hydrogeology, Geological Publishing, Edition 4th, Warszawa (in Polish).
72. Pejman, A.H., Nabi Bidhendi, G.R., Karbassi, A.R., Mehrdadi, N. & Esmaeili Bidhendi, M. (2009). Evaluation of spatial and seasonal variations in surface water quality using multivariate statistical techniques, International Journal of Environmental Science and Technology, 6, 3, pp. 467–476. DOI: 10.1007/BF03326086.
73. Przybyła, C., Kozdroj, P. & Sojka, M. (2015). Application of Multivariate Statistical Methods in Water Quality Assessment of River-reservoirs Systems (on the Example of Jutrosin and Pakoslaw Reservoirs, Orla Basin), Annual Set the Environment Protection, 17(2), pp. 1125-1141.
74. Rao, A.R. & Srinivas, V.V. (2008). Regionalization of Watersheds. An approach based on cluster analysis. Springer, New York.
75. Sakamoto, M. (1966). Primary production by phytoplankton community in some Japanese lakes and its dependence on lake depth, Archiv für Hydrobiologie, 62, pp. 1–28.
76. Sand-Jensen, K., Bruun, H.H. & Baastriup-Spohr, L. (2016). Decade‐long time delays in nutrient and plant species dynamics during eutrophication and re‐oligotrophication of Lake Fure 1900–2015, Journal of Ecology, 105(3), DOI: 10.1111/1365-2745.12715.
77. Schiozer, D.J, Ligero, E.L. & Santos, J.A.M. (2004). Risk assessment for reservoir de-velopment under uncertainty, Journal of the Brazilian Society of Mechanical Sci-ences and Engineering, 26(2), DOI: 10.1590/S1678-58782004000200014.
78. Shrestha, S. & Kazama, F. (2007). Assessment of Surface Water Quality using Multi-variate Statistical Techniques: A Case Study of the Fuji River Basin, Japan. Environmental Modelling & Software, 22(4), 464–475, DOI: 10.1016/j.envsoft.2006.02.001.
79. Singh, K. P., Malik, A., Singh V. K., Mohan, D. & Sinha, S. (2005). Chemometric Da-ta Analysis of Pollutants in wastewater - a Case Study. Analytica Chimica Ac-ta, 550, 82–91. DOI: 10.1016/j.aca.2004.10.043.
80. Sojka, M., Jaskuła, J., Siepak, M. (2019). Article Heavy Metals in Bottom Sediments of Reservoirs in the Lowland Area of Western Poland: Concentrations, Distribution, Sources and Ecological Risk, Water, 11, 56, DOI: 10.3390/w11010056.
81. Stathis, D., Myronidis, D. (2009). Principal component analysis of precipitation in Thessaly region (Central Greece). Global NEST Journal, Vol. 11 (4), pp. 467-476,
82. StatSoft, Electronic Statistics Textbook. 2011. Available on: https://www.statsoft.pl/textbook/stathome.html (accessed on January 2020).
83. Szatten, D., Habel, M., Pellegrini, L. & Maerker, M. (2018). Assessment of Siltation Processes of the Koronowski Reservoir in the Northern Polish Lowland Based on Bathymetry and Empirical Formulas, Water, 10, 1681. DOI: 10.3390/w10111681.
84. Szoszkiewicz K., Wicher-Dysarz J., Sojka, M. & Dysarz, T. (2016). Assessment of hydraulic, hydrological and physicochemical factors affecting vegetation development in dam reservoir with separated inlet zone - stare miasto (Central Poland) reservoir as a case study. Fresenius Environmental Bulletin. Vol. 25, No.( 8), pp. 2772-2783.
85. Tallar, R. & Suen, J-P. (2017). Measuring the Aesthetic Value of Multifunctional Lakes Using an Enhanced Visual Quality Method, Water, 9(4), DOI: 10.3390/w9040233.
86. Tokarczyk-Dorociak, K., Gębarowski, S. (2011). Implementation of Water Frame-work Directive in Barycz river basin,. Infrastruktura i Ekologia Terenów Wiejskich 10, pp. 15-27 (in Polish).
87. Tokarczyk, T. & Szalińska, W. (2018). Drought hazard assessment in the process of drought risk management . Acta Sci. Pol., Formatio Circumiectus, 18(3), 217–229. DOI: 10.15576/ASP.FC/2018.17.3.217.
88. Varol, M., Gökot, B., Bekleyen, A. & Şen, B. (2012). Water quality assessment and apportionment of pollution sources of Tigris river (Turkey) using multivariate statistical techniques – a case study, River Research and Applications, 28, pp. 1428–1438, DOI: 10.1002/rra.1533.
89. Vollenweider, R.A. (1965). Material and ideas for a hydrochemistry of water, Memorie dell'Istituto Italiano di Idrobiologia, 19, pp. 213-286 (in Italian).
90. Vollenweider, R.A. (1992). The relationship between phosphorus load and eutrophication response in Lake Vanda, Physical and Biogeochemical Processes in Antarctic Lakes, 59, DOI: 10.1029/AR059p0197.
91. Voza, D., Vuković, M., Takić, L.J., Nikolić, D.J. & Mladenović-Ranisavljević, I. (2015) Application of multivariate statistical techniques in the water quality assessment of Danube river, Serbia. Archives of Environmental Protection, 41(4), pp. 96–103. DOI 10.1515/aep-2015-0044.
92. Waligórski B., Sojka M., Jaskuła J. & Korytowski M. (2018). Analysis of the use of se-lected reservoirs in the Wielkopolska province. Ann. Warsaw Univ. of Life Sci. – SGGW, Land Reclam. 50 (4), 2018). DOI: 10.2478/sggw-2018-0029.
93. Wiatkowska, B. & Słodczyk, J. (2018). Spatial Diversity of Environmental Govern-ance in the Aspect of Sustainable Development of the Polish-Czech Border Area, [in:] Development and administration of border areas of the Czech Republic and Poland. Support for sustainable development, VŠB – Technical University of Ostrava, pp. 292–301. https://repo.uni.opole.pl/docstore/download/UO08212fce5a4b44c88b513175db404927/WiatkowskaB-SlodczykJ-SpatialDiversity.pdf
94. Wiatkowski, M. & Paul, L. (2009). Surface water quality assessment in the Troja river catchment in the context of Włodzienin reservoir construction. Polish Journal of Environmental Studies,. Vol. 18, 5, pp. 923-929.
95. Wiatkowski, M. & Czerniawska-Kusza, I. (2009). Use of Jedlice preliminary reservoir for water protection of Turawa dam reservoir. Oceanological and Hydrobiological Studies, vol. XXXVIII, 1, pp. 83-91.
96. Wiatkowski, M. (2010). Impact of the small water reservoir Psurów on the quality and flows of the Prosna river. Archives of Environmental Protection, vol. 36, 3, pp. 83-96.
97. Wiatkowski, M., Rosik-Dulewska, C., Kuczewski, K. & Kasperek, R. (2013). Water Quality Assessment of Włodzienin Reservoir in the First Year of Its Operation, Annual Set The Environment Protection, 15(3), pp. 2666-2682 (in Polish).
98. Wiatkowski M., Rosik-Dulewska, C. & Kasperek R. (2015). Inflow of Pollutants to the Bukówka Drinking Water Reservoir from the Transboundary Bóbr River Basin. Annual Set The Environment Protection, 17, pp. 316-336.
99. Wiatkowski, M., & Rosik-Dulewska, C. (2015). Water management problems at the Bukówka drinking water reservoir's cross-border basin area in terms of its established functions. J. Ecol. Eng. , 16(2), pp. 52–60. DOI: 10.12911/22998993/1857.
100. Wiatkowski, M., Gruss, Ł., Tomczyk, P. & Rosik-Dulewska, C. (2018). Analy-sis of water quality of the Stobrawa river at the location of the Walce small retention reservoir. Annual Set The Environment Protection, Vol. 20, pp. 184-202.
101. Wiatkowski, M. & Wiatkowska, B. (2019). Changes in the flow and quality of water in the dam reservoir of the Mała Panew catchment (South Poland) characterized by multidimensional data analysis. Archives of Environmental Protection, 45, 1, pp. 26–41. DOI: 10.24425/aep.2019.126339.
102. Wilk, P. & Grabarczyk, A. (2018). The effect of selected inviolable flow char-acteristics on the results of environmental analysis using the example of river absorp-tion capacity Archives of Environmental Protection, 44(2), pp. 14-25. DOI: 10.24425/119702.
103. WIOŚ (Regional Inspectorate for Environmental Protection) (2011, 2013, 2015, 2016). Report on the state of the environment in the Dolnośląskie and Wielkopolskie voivodships, Wrocław, Poznań.
104. Wu, J., Liu, Z., Yao, H., Chen, X., Chen, X., Zheng, Y., & He, Y. (2018). Impacts of reservoir operations on multi-scale correlations between hydrological drought and meteorological drought, Journal of Hydrology, 563, pp. 726–736, DOI: 10.1016/j.jhydrol.2018.06.053.
105. WZMiUW (Provincial Board of Land Reclamation and Water Facilities) Poznań (2015). Program małej retencji wodnej w województwie wielkopolskim na lata 2016–2030. Study prepared by Bureau for Land Reclamation and Environmental Engineering Biprowodmel Ltd (in Polish).
106. Żmuda R., Szewrański S., Kowalczyk T., Szarawarski Ł. & Kuriata M. (2009). Landscape alteration in view of soil protection from water erosion - an example of the Mielnica watershed, Journal of Water and Land Development, 13a, pp. 161-175.

Go to article

Authors and Affiliations

Mirosław Wiatkowski
1
Barbara Wiatkowska
2
Łukasz Gruss
1
Czesława Rosik-Dulewska
3
ORCID: ORCID
Paweł Tomczyk
1
Dawid Chłopek
1

  1. Wrocław University of Environmental and Life Sciences, Institute of Environmental Engineering, Poland
  2. University of Opole, Institute of Socio-Economic Geography and Spatial Management, Poland
  3. Institute of Environmental Engineering Polish Academy of Sciences in Zabrze

This page uses 'cookies'. Learn more