Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 5
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

According to data of the Central Statistical Office, the amount of sludge produced in municipal wastewater treatment plants in 2010 amounted to 526000 Mg d.m. The forecast of municipal sewage sludge amount in 2015 according to KPGO2014 will reach 642400 Mg d.m. and is expected to increase in subsequent years. Significant amounts of sludge will create problems due to its utilization. In order to solve this problem the use of thermal methods for sludge utilization is expected. According to the National Waste Management Plan nearly 30% of sewage sludge mass should be thermally utilized by 2022. The article presents the results of co-combustion of coal and municipal sewage sludge in a bubbling fluidized bed boiler made by SEFAKO and located in the Municipal Heating Company in Morag. Four tests of hard coal and sewage sludge co-combustion have been conducted. Boiler performance, emissions and ash quality were investigated.

Go to article

Authors and Affiliations

Rafał Rajczyk
Jurand Bień
Henryk Palka
Andrzej Pogodziński
Hubert Smorąg
Download PDF Download RIS Download Bibtex

Abstract

The research covered two lakes: Karczemne and Domowe Małe, which served as receivers for rainwater and municipal or industrial sewage. The sediment cores were obtained using a Kajak tube sampler. Analyses of HM, PAH and PCB were done by the AAS, ICP-AES and GC MS methods. OM, SiO2, TH, Ca, Mg, CO2, Fe, Al, Mn, TN and TP were measured. The research showed that the sediments of Lake Karczemne, into which the untreated municipal sewage was discharged, are characterized by a high content of P. It was found that the sediments accumulate toxins, OM and pollutants characteristic for various industries. Karczemne Lake which collected municipal and industrial wastewater, contained a high content of Pb, Cu and PAH in the sediments, and Domowe Małe Lake, receiving stormwater, contained high concentrations of PAH. Research has shown that one of the most important tools for selecting an appropriate method of lake restoration is the analysis of the spatial distribution of pollutants in the bottom sediments. Thanks to such an analysis of the composition of the bottom sediments and the correlation between the components of the sediments and their sorption properties, the restoration of the Karczemne Lake using the Ripl method was planned and the possibility of restoration of the Domowe Małe Lake in this way was eliminated.
Go to article

Bibliography

  1. Algül, F. & Beyhan, M. (2020). Concentrations and sources of heavy metals in shallow sediments in Lake Bafa, Turkey. Scientific Reports, 10, 11728. DOI:10.1038/s41598-020-68833-2.
  2. Alves, C., Gonçalves, C., Evtyugina, M., Pio, C., Mirante, F. & Puxbaum, H. (2010). Particulate organic compounds emitted form experimental wildland fires in a Mediterranean ecosystem. Atmospheric Environment, 44, 23, pp. 2750-2759. DOI:10.1016/j.atmosenv.2010.04.029.
  3. Augustyniak, R., Grochowska, J.K., Łopata, M., Parszuto, K., Tandyrak, R. & Tunowski, J. (2019). Sorption properties of the bottom sediment of a lake restored by phosphorus inactivation method15 years after the termination of the lake restoration procedures. Water, 11, 10, 1-20. DOI:10.3390/w11102175.
  4. Augustyniak, R., Neugebauer, M., Kowalska, J., Szymański, D., Wiśniewski, G., Filipkowska, Z., Grochowska, J., Łopata, M., Parszuto, K. & Tandyrak, R. (2015). Bottom deposits of stratified, seepage, urban lake (on the example of Tyrsko Lake, Poland) as a factor potentially shaping lake water quality. Journal of Ecological Engineering, 18, 5, pp. 55-62.
  5. Barbusiński, K. & Nocoń, W. (2011). Heavy metal compound content in Kłodnica bottom sediments. Environmental Protection, 33, 1, pp. 13 – 17. (in Polish)
  6. Bartoli, G., Papa, S., Sagnella, E. & Fioretto, A. (2012). Heavy metal content in sediments along the Calore river: Relationships with physical–chemical characteristics. Journal of Environmental Management, 95, pp. 9-14. DOI:10.1016/j.jenvman.2011.02.013.
  7. Bing, H.J., Wu, Y.H., Sunz, B. & Yao, S.C. (2011). Historical trends of heavy metal contamination and their sources in lacustrine sediment from Xijiu Lake, Taihu Lake Catchment, China. Journal of Environmental Sciences, 23, 10, pp. 1671-1678. DOI:10.1016/s1001-0742(10)60593-1.
  8. Birch, G. & Taylor, S. (1999). Source of heavy metals in sediments of the Port Jackson estuary, Australia. Science of The Total Environment, 227, (2–3), pp. 123-138.
  9. Bocca, B., Alimonti, A., Petrucci, F., Violante, N., Sancesario, G. & Forte, G. (2004). Quantification of trace elements by sector field inductively coupled plasma spectrometry in urine, serum, blood and cerebrospinal fluid of patients with Parkinson’s disease. Spectrochimica Acta, 59, 4, pp. 559–566. DOI:10.1016/j.sab.2004.02.007.
  10. Bojakowska, I. & Sokołowska, G. (1996). Heavy metals in lake sediments of the Kashubian Lake District. Geological Review, 44, 9, pp. 920 – 923. (in Polish)
  11. Bojakowska, I., Sztuczyńska, A. & Grabiec-Raczak, E. (2012). Monitoring studies of lake sediments in Poland: polycyclic aromatic hydrocarbons. Bulletin of the Polish Geological Institute, 450, pp. 17-26. (in Polish)
  12. Brzozowska, R. & Gawrońska, H. (2009). The influence of a long-term artificial aeration on the nitrogen compounds exchange between bottom sediments and water in Lake Długie. Oceanological and Hydrobiological Studies, 38, 1, pp. 113-119.
  13. Cappacioni, B., Martini, M. & Mangani, F. (1995). Light hydrocarbons in hydrothermal and magmatic fumaroles: hints of catalytic and thermal reactions. Bulletin of Volconalogy, 56, 8, pp. 593-600.
  14. Chen, M., Ding, S., Zhang, L., Li, Y., Sun, Q. & Zhang, Ch. (2017). An investigation of the effects of elevated phosphorus in water on the release of heavy metals in sediments at a high resolution. Science of The Total Environment, 575, pp. 330-337. DOI:10.1016/j.scitotenv.2016.10.063.
  15. Dhanakumar, S., Solaraj, G. & Mohanraj, R. (2015). Heavy metal partitioning in sediments and bioaccumulation in commercial fish species of three major reservoirs of river Cauvery delta region, India. Ecotoxicology and Environmental Safety, 113, pp. 145-151. DOI:10.1016/j.ecoenv.2014.11.032.
  16. EPA (2001). Parameters of Water Quality. Interpretation and Standards. Environmental Protection Agency, Wexford.
  17. Fu, J., Zhao, Ch., Luo, Y., Liu, Ch., Kyzas, G.Z., Luo, Y., Zhao, D., An, S. & Zhu, H. (2014). Heavy metals in surface sediments of the Jialu River, China: Their relations to environmental factors. Journal of Hazardous Materials, 270, pp. 102-109. DOI:10.1016/j.jhazmat.2014.01.044.
  18. Gabarrón, M., Faz, A., Martínez-Martínez, S., Zornoza, R. & Acosta, J.A. (2017). Assessment of metals behaviour in industrial soil using sequential extraction, multivariable analysis and a geostatistical approach. Journal of Geochemical Exploration, 172, pp. 174-183. DOI:10.1016/j.gexplo.2016.10.015.
  19. Grochowska, J., Augustyniak, R., Łopata, M. & Tandyrak, R. (2020). Is it possible to restore a heavily polluted, shallow, urban lake? Applied Science, 10, 11, pp. 3698. DOI:10.3390/app10113698.
  20. Grochowska, J., Augustyniak, R., Łopata, M., Parszuto, K., Tandyrak, R. & Płachta, A. (2019). From saprotrophic to clear water status: the restoration path of a degraded urban lake. Water, Air & Soil Pollution, 230, pp. 1-14. DOI:10.1007/s11270-019-4138-5.
  21. Grochowska, J., Tandyrak, R. & Wiśniewski, G. (2014). Long-term hydrochemical changes in a lake after the application of several protection measures in the catchment. Polish Journal of Natural Sciences, 29, 3, pp. 251 - 263.
  22. Håkanson, L. (1980). An ecological risk index for aquatic pollution control. A sedimentological approach. Water Research, 14, pp. 975-1001.
  23. Håkanson, L. (2004). Internal loading: A new solution to an old problem in aquatic sciences. Lake and Reservoir and Management, 9, 1, pp. 3-23. DOI:10.1111/j. 1440-1770.2004.00230.x.
  24. Hermanowicz, W., Dożańska, W., Dojlido, J., Koziorowski, B. & Zerbe, J. (1999). Physico - chemical study of water and wastewater. Ed. Arkady, Warsaw, Poland, 1999. (in Polish)
  25. Jansson, M. (1987). Anaerobic dissolution of iron-phosphorus complex in sediment due to the activity of nitrate-reducing bacteria. Microbial Ecology, 14, pp. 81-89.
  26. Jeremiason, J.D., Eisenreich, S.J. & Peterson, M.J. (2011). Accumulation and recycling of PCBs and PAHs in artificially eutrophied lake 227. Canadian Journal of Fisheries and Aquatic Sciences, 56, 4, pp. 650-660. DOI:10.1139/cjfas-56-4-650.
  27. Jeremiason, J.D., Eisenreich, S.J., Peterson, M.J., Beaty, K.G., Hecky, R. & Elser, J.J. (1999). Biogeochemical cycling of PCBs in lakes of variable trophic status: A paired-lake experiment. Limnology and Oceanography, 44, 3, 2, pp. 889-902. DOI:10.4319/lo.1999.44.3.
  28. Joniak, T., Jakubowska, N. & Szeląg-Wasilewska, E. (2013). Degradation of the recreational functions of urban lake: A preliminary evaluation of water turbidity and light availability (Strzeszyńskie Lake, Western Poland). Polish Journal of Natural Sciences, 28, pp. 43–51.
  29. Juśkiewicz, W., Marszelewski, W. & Tylmann, W. (2015). Differentiation of the concentration of heavy metals and persistent organic pollutants in lake sediments depending on the catchment management (Lake Gopło case study). Bulletin of Geography. Physical Geography Series, 8, 71-80. DOI:10.1515/bgeo-2015-0006.
  30. Kaca, E. (2003). Measurements of water flow volume and mass of substance contained in it, and its uncertainty on the example of fish ponds. Water-Environment-Rural Areas, 13, 41, pp. 31-57. (in Polish)
  31. Kang, X., Song, J., Yuan, H., Duan, L., Li, X., Li, N., Liang, X. & Qu, B. (2017). Speciation of heavy metals in different grain sizes of Jiaozhou Bay sediments: bioavailability, ecological risk assessment and source analysis on a centennial timescale. Ecotoxicology and Environmental Safety, 143, pp. 296-306. DOI:10.1016/j.ecoenv.2017.05.036.
  32. Katsoyiannis, A., Terzi, E. & Cai, Q.Y. (2007). On the use of PAH molecular diagnostic ratios in sewage sludge for the understanding of the PAH sources. Is this use appropriate? Chemosphere, 69, pp. 1337-1339. DOI:10.1016/j.chemosphere.2007.05.084.
  33. Kishe, M.A. & Machiwa, J.F. (2003). Distribution of heavy metals in sediments of Mwanza Gulf of Lake Victoria, Tanzania. Environment International, 28, 7, pp. 619-625. DOI:10.1016/S0160-4120(02)00099-5.
  34. Kondracki, J.A. (2011). Regional Geography of Poland. Ed. PWN, Warsaw, Poland. (in Polish)
  35. Kowalczewska-Madura, K., Dondajewska, R., Gołdyn, R., Kozak, A. & Messyasz, B. (2018). Internal phosphorus loading from the bottom sediments of a dimictic lake during its sustainable restoration. Water, Air & Soil Pollution, 229, 8, pp. 280. DOI:10.1007/s11270-018-3937-4.
  36. Kowalczewska-Madura, K., Gołdyn, R. & Dondajewska, R. (2011). Phosphorus release from the bottom sediments of Lake Rusałka (Poznań, Poland). Oceanological and Hydrobiological Studies, 38, 4, pp. 135-144. DOI:10.2478/VI00009-010-0046-0.
  37. LAWA – Länder-Arbeitsgemeinschaft Wasser. Beurteilung der Wasserbeschaffenheit von Fließgewässern in der Bundesrepublik Deutschland – chemische Gewässergüteklassifi kation. Zielvorgaben zum Schutz oberirdischer Binnengewässer, Berlin, Germany, Band 2, 10, pp. 1–26.
  38. Lidell, M., Bremle, G., Broberg, O. & Larsson, P. (2001). Monitoring of persistent organic pollutants (POPs): examples from Lake Väner, Sweden. Ambio 30, 8, pp. 545-551. DOI:10.1579/0044-7447-30.8.545.
  39. Liu, B., Xu, H., Lan, J., Sheng, E., Che, S. & Zhou, X. (2014). Biogenic silica contents of Lake Quinghai sediments and its environmental significance. Frontiers of Earth Science, 8, 4, pp. 573-581. DOI:10.1007/s11707-014-0440-0.
  40. Liu, D., Yuan, P., Tian, Q., Liu, H., Deng, L., Song, Y., Zhou, J., Losic, D., Zhou, J., Song, H., Guo, H. & Fan, W. (2019). Lake sedimentary biogenic silica from diatoms constitutes a significant global sink for aluminium. Nature Communications, 10, pp. 4829. DOI:10.1038/s41467-019-12828-9.
  41. Łopata, M. (2010). Water-legal survey for the introduction of substances inhibiting the growth of algae to the waters of Domowe Duże and Domowe Małe lakes in Szczytno in connection with the planned reclamation of the lakes using the phosphorus inactivation method. Typescript. (in Polish)
  42. Mamindy-Pajany, Y., Hamer, B., Romeo, M., Geret, F., Galgani, F., Durmisi, E., Hurel, Ch. & Marmier, N. (2011). The toxicity of composed sediments from Mediterranean ports evaluated by several bioassays. Chemosphere, 82, 3, pp. 362-369. DPO:10.1016/j.chemosphere.2010.10.005.
  43. Migaszewski, Z.M. & Gałuszka, A. (2003). Outline of environmental geochemistry. Publishing of the Świętokrzyska Academy, Kielce, Poland.(in Polish)
  44. Nasr, S.M., Okbah, M.A. & Kasem, S.M. (2006). Environmental assessment of heavy metal pollution in bottom sediments of Aden Port, Yemen. International Journal of Oceans and Oceanography, 1, 1, pp. 99-109.
  45. Ordinance of the Ministry of the Environment of 1 September 2016 on the method of conducting an assessment of the soil surface pollution. Journal of Laws of 2016, item 1395. (in Polish)
  46. Ordinance of the Ministry of the Environment of 11 May 2015 on the recovery of waste outside installations and equipment. Journal of Laws of 2015, item 796. (in Polish)
  47. Piaścik, H. (1996). Geological and geomorphological conditions of the Masurian Lake District and the Sępopolska Plain. Problem Journals of the Progress of Agricultural Sciences, 431, pp. 31-45. (in Polish)
  48. Piasecki, D. (1960). Geological and morphological sketch of the Radunia river basin. Annals of the Polish Geological Society, XXIX, 4, pp. 385-394. (in Polish)
  49. Planter, M., Jędrychowska, G. & Łaźniewski, J. (2005). Assessment of the purity of the Bartąg, Domowe Duże, Domowe Małe and Ukiel lakes according to the research from 2004. VIEP Olsztyn, 30, 2, pp. 1-5. (in Polish)
  50. Pohl, A., Kostecki, M., Jureczko, I., Czaplicka, M. & Łozowski, B. (2018). Polycyclic aromatic hydrocarbons in water and bottom sediments of a shallow, lowland dammed reservoir (on the example of reservoir Blachownia, South Poland). Archives of Environment Protection, 44, 1, pp. 10-23. DOI:10.24425/118177.
  51. Prosowicz, D. (2008). Metals in bottom sediments of Wigry Lake. Geologia, 34, pp. 85–108. (in Polish)
  52. Ripl, W. (1976a). Biochemical oxidation of polluted lake sediment with nitrate. A new restoration method. Ambio, 5, pp. 132–135.
  53. Ripl, W. (l976b). Prozeßsteuerung in geschädigten See-Ökosystemen. Vierteljahresschrift der Naturforschenden Gesell-schaft Zürich, 121, pp. 301–308.
  54. Roden, E.& Emonds, J. (1997). Phosphate mobilization in iron-rich anaerobic sediments: microbial Fe(III) oxide reduction versus iron-sulfide formation. Archive fur Hydrobiologie, 139, 3, pp. 347-378. DOI:10.1127/archiv-hydrobiol/139/1997/347.
  55. Sanders, G., Hamilton-Taylor, J. & Jones, K.C. (1996). PCB and PAH dynamics in a small rural lake. Environmental Science and Technology, 30, 10, pp. 2958-2966. DOI:10.10.21/es9509240.
  56. Sojka, M., Jaskuła, J. & Siepak, M. (2018). Heavy metals in bottom sediments of reservoirs in the lowland area of Western Poland: concentrations, distribution, sources and ecological risk. Water, 11, pp. 56. DOI:10.3390/w11010056.
  57. Stogiannidis, E. & Laane, R. (2015). Source characterization of polycyclic aromatic hydrocarbons by using their molecular indices: an overview of possibilities. In: Whitacre, D.M. (ed.) Reviews of environmental contamination and toxicology. Springer International Publishing, Switzerland, 234, pp. 49-133.
  58. Tibco Software Inc. STATISTICA version 13.0 2018.
  59. Waisberg, M., Joseph, P., Hale, B. & Beyersmann, D. (2003). Molecular and cellular mechanisms of cadmium carcinogenesis. Toxicology, 192, (2-3), pp. 95–117. DOI:10.1016/s0300-483x(03)00305-6.
  60. Wakida, F.T., Lara-Ruiz, D., Temores-Pen, J., Rodriguez-Ventura, J.G., Diaz, C. & Garcia-Flores, E. (2008). Heavy metals in sediments of the Tecate River, Mexico. Environmental Geology, 54, 3, pp. 637-642. DOI:10.1007/s00254-007-0831-6.
  61. Wang, X., Zhang, L., Zhao, Z. & Cai, Y. (2018). Heavy metal pollution in reservoir in the hilly area of southern China: Distribution, source apportionment and health risk assessment. Science of the Total Environment, 634, pp. 158-169. DOI:10.1016/j.scitotenv.2018.03.340.
  62. Wilson, D.C. (2018). Potential urban runoff impacts and contaminant distributions in shoreline and reservoir environments of Lake Havasu, southwestern United States. Science of the Total Environment, 621, pp. 95-107. DOI:10.1016/j.scitotenv.2017.11.223.
  63. Wróbel, P. (2012). Elaboration of bathymetry and morphometric chart of the Lake Domowe Małe. Typescript. (in Polish)
  64. Yunker, M.B., Macdonald, R.W., Vingarzan, R., Mitchell, R.H., Goyette, D. & Sylvestre, S. (2002). PAH in the Fraser River basin: a critical appraisal of PAH ratios as indicator of PAH source and composition. Organic Geochemistry, 33, pp. 489-515. DOI:10.1016/s0146-6380(02)00002.
  65. Zamparas, M. & Zacharias, I. (2014). Restoration of eutrophic freshwater by managing internal nutrient loads. Science of the Total Environment, 496, pp. 551-562. DOI:10.1016/j.scitotenv.2014.07.076.
Go to article

Authors and Affiliations

Jolanta Katarzyna Grochowska
1
ORCID: ORCID
Renata Tandyrak
1
Renata Augustyniak
1
ORCID: ORCID
Michał Łopata
1
Dariusz Popielarczyk
1
ORCID: ORCID
Tomasz Templin
1
ORCID: ORCID

  1. University Warmia and Mazury in Olsztyn, Poland
Download PDF Download RIS Download Bibtex

Abstract

An increasing number of municipal sewage treatment plants in Poland, desirable from an environmental perspective, raises the problem of managing the growing volume of sewage sludge. The thermal treatment of municipal sewage sludge (TTMSS) method, by greatly reducing the waste volume, increases the heavy metal concentration in fly ash (primary, end product of the treatment process), which may constitute a risk factor when attempting to utilize them economically. The research paper concentrates on determining the TTMSS fly ash heavy metal leaching level. For this purpose, ash samples were subjected to leaching with the batch and percolation tests, and the heavy metal content in eluates was determined by the FAAS method. The obtained results served as a base to determine the level of heavy metal immobilization in the ash, the element release mechanism (percolation test), and the impact of the L/S (liquid to solid) ratio and pH on the heavy metal leaching intensity (percolation test). The conducted research indicated high immobilization of heavy metals in TTMSS fly ash, regardless of the applied study method, which corresponds to the results of other researchers. Lead was the most intensively eluted metal.

Go to article

Authors and Affiliations

Łukasz Szarek
1
ORCID: ORCID

  1. Warsaw University of Technology, Poland
Download PDF Download RIS Download Bibtex

Abstract

The growing number of municipal sewage treatment plants in Poland raises the problem of managing more and more sludge. The thermal treatment of municipal sewage sludge (TTMSS), which significantly reduces the volume of waste, results in an increase in the concentration of heavy metals in the fly ashes – the final products of the process. The search for methods of utilization of fly ash from TTMSS resulted in attempts to use it in hardening slurries widely used in hydro-engineering. Due to the nature of the application of this material in the cut-off walls (exposure to groundwater flow) one of the key issues is the degree of heavy metal immobilization. The paper attempted to determine the degree of leaching of selected heavy metals from the hardened hardening slurry, composed of fly ash from TTMSS. For this purpose, the eluates were prepared from samples, after various periods of curing, using a dynamic short-term method called "Batch test". The liquid used for leaching was: distilled water and 0.1 molar EDTA solution – to determine the amount of potentially mobile heavy metal forms. The results show the possibility of the safe usage of fly ash from TTMSS as an additive for hardening slurries.

Go to article

Authors and Affiliations

Łukasz Szarek
ORCID: ORCID
Paweł Falaciński
ORCID: ORCID
Małgorzata Wojtkowska
Download PDF Download RIS Download Bibtex

Abstract

Along with the increase in popularity of the sewage sludge thermal treatment methods in Poland

resulting from the implementation of European Union law, a management problem with ash, which is produced

as a result of this process, appeared. The paper analyses the chemical composition and physical properties of fl y

ash from thermal treatment of municipal sewage sludge in terms of its use in concrete technologies in relation to

EN 450-1 Fly ash for concrete. Defi nition, specifi cations and conformity criteria (2012) and EN 197-1 Cement.

Composition, specifi cations and conformity criteria for common cements (2011) standards. The tested material did

not meet the requirements related to use of fl y ash for concrete production (chemical composition, low activity

index, high water demand and fi neness), and as main and minor components for cement production. On the basis

of the carried out research and analyses, it was found that the hardening slurry technology creates the greatest

possibilities related to the management of fl y ash from thermal treatment of municipal sewage sludge.

Go to article

Authors and Affiliations

Łukasz Szarek
Małgorzata Wojtkowska

This page uses 'cookies'. Learn more