Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 19
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

A number of micromechanical investigations have been performed to predict behaviour of composite interfaces, showing that the detailed behaviour of the material at these interfaces frequently dominates the behaviour of the composite as a whole. The interfacial interaction is an extremely complex process due to continuous evolution of interfacial zones during deformation and this is particularly true for carbon nanotubes since the interfacial interaction is confined to the discrete molecular level. The atomic strain concept based upon Voronoi tessellation allows analyzing the molecular structure atom by atom, which may give a unique insight into deformation phenomena operative at molecular level such as interface behaviour in nanocomposites.

Go to article

Authors and Affiliations

R. Pyrz
B. Bochenek
Download PDF Download RIS Download Bibtex

Abstract

In manufacturing industries, the selection of machine parameters is a very complicated task in a time-bound manner. The process parameters play a primary role in confirming the quality, low cost of manufacturing, high productivity, and provide the source for sustainable machining. This paper explores the milling behavior of MWCNT/epoxy nanocomposites to attain the parametric conditions having lower surface roughness (Ra) and higher materials removal rate (MRR). Milling is considered as an indispensable process employed to acquire highly accurate and precise slots. Particle swarm optimization (PSO) is very trendy among the nature-stimulated metaheuristic method used for the optimization of varying constraints. This article uses the non-dominated PSO algorithm to optimize the milling parameters, namely, MWCNT weight% (Wt.), spindle speed (N), feed rate (F), and depth of cut (D). The first setting confirmatory test demonstrates the value of Ra and MRR that are found as 1:62 μm and 5.69 mm3/min, respectively and for the second set, the obtained values of Ra and MRR are 3.74 μm and 22.83 mm3/min respectively. The Pareto set allows the manufacturer to determine the optimal setting depending on their application need. The outcomes of the proposed algorithm offer new criteria to control the milling parameters for high efficiency.

Go to article

Bibliography

[1] M. Liu, H. Younes, H. Hong, and G.P. Peterson. Polymer nanocomposites with improved mechanical and thermal properties by magnetically aligned carbon nanotubes. Polymer, 166:81–87, 2019. doi: 10.1016/j.polymer.2019.01.031.
[2] S.K. Singh and V.K. Verma. Exact solution of flow in a composite porous channel. Archive of Mechanical Engineering, 67(1):97–110, 2020, doi: 10.24425/ame.2020.131685.
[3] N. Pundhir, S. Zafar, and H. Pathak. Performance evaluation of HDPE/MWCNT and HDPE/kenaf composites. Journal of Thermoplastic Composite Materials, 2019. doi: 10.1177/0892705719868278.
[4] N. Muralidhar, V. Kaliveeran, V. Arumugam, and I.S. Reddy. Dynamic mechanical characterization of epoxy composite reinforced with areca nut husk fiber. Archive of Mechanical Engineering, 67(1):57–72, 2020, doi: 10.24425/ame.2020.131683.
[5] F. Mostaani, M.R. Moghbeli, and H. Karimian. Electrical conductivity, aging behavior, and electromagnetic interference (EMI) shielding properties of polyaniline/MWCNT nanocomposites. Journal of Thermoplastic Composite Materials, 31(10):1393–1415, 2018. doi: 10.1177/0892705717738294.
[6] M.R. Sanjay, P. Madhu, M. Jawaid, P. Senthamaraikannan, S. Senthil, and S. Pradeep. Characterization and properties of natural fiber polymer composites: A comprehensive review. Journal of Cleaner Production, 172:566–581, 2018. doi: 10.1016/j.jclepro.2017.10.101.
[7] A.J. Valdani and A. Adamian. Finite element-finite volume simulation of underwater explosion and its impact on a reinforced steel plate. Archive of Mechanical Engineering, 67(1):5–30, 2020, doi: 10.24425/ame.2020.131681.
[8] A. Kausar, I. Rafique, and B. Muhammad. Review of applications of polymer/carbon nanotubes and epoxy/CNT composites. Polymer-Plastics Technology and Engineering, 55(11):1167–1191, 2016. doi: 10.1080/03602559.2016.1163588.
[9] E. Vajaiac, et al. Mechanical properties of multiwall carbon nanotube-epoxy composites. Digest Journal of Nanomaterials and Biostructures, 10(2):359–369, 2015.
[10] A.E Douba, M. Emiroglu, R.A Tarefder, U.F Kandil, and M.R. Taha. Use of carbon nanotubes to improve fracture toughness of polymer concrete. Journal of the Transportation Research Board, 2612(1):96–103, 2017. doi: 10.3141/2612-11.
[11] W. Khan, R. Sharma, and P. Saini. Carbon nanotube-based polymer composites: synthesis, properties and applications. In M.R. Berber and I.H. Hafez (eds.). Carbon Nanotubes. Current Progress and their Polymer Composites. chapter 1, pages 1-46. IntechOpen, Rijeka, Croatia, 2016. doi: 10.5772/62497.
[12] W.M. da Silva, H. Ribeiro, J.C. Neves, A.R. Sousa, and G.G. Silva. Improved impact strength of epoxy by the addition of functionalized multiwalled carbon nanotubes and reactive diluent. Journal of Applied Polymer Science, 132(39):1–12, 2015, doi: 10.1002/app.42587.
[13] S. Dixit, A. Mahata, D.R. Mahapatra, S.V. Kailas, and K. Chattopadhyay. Multi-layer graphene reinforced aluminum – Manufacturing of high strength composite by friction stir alloying. Composites Part B: Engineering,136: 63–71, 2018. doi: 10.1016/j.compositesb.2017.10.028.
[14] C. Kostagiannakopoulou, X. Tsilimigkra, G. Sotiriadis, and V. Kostopoulos. Synergy effect of carbon nano-fillers on the fracture toughness of structural composites. Composites Part B: Engineering, 129:18–25, 2017. doi: 10.1016/j.compositesb.2017.07.012.
[15] G. Romhány and G. Szebényi. Preparation of MWCNT reinforced epoxy nanocomposite and examination of its mechanical properties. Plastics, Rubber and Composites, 37(5-6):214–218, 2008. doi: 10.1179/174328908X309376.
[16] G. Mittal, V. Dhand, K.Y. Rhee, S.J. Park, and W.R. Lee. A review on carbon nanotubes and graphene as fillers in reinforced polymer nanocomposites. Journal of Industrial and Engineering Chemistry, 21:11–25, 2015. doi: 10.1016/j.jiec.2014.03.022.
[17] S. H. Behzad, M.J. Kimya, G. Mehrnaz. Mechanical properties of multi-walled carbon nanotube/epoxy polysulfide nanocomposite. Journal of Materials & Design, 50:62–67, 2013.
[18] N. Yu, Z.H. Zhang, and S.Y. He. Fracture toughness and fatigue life of MWCNT/epoxy composites. Materials Science and Engineering: A, 494(1-2):380:384, 2018. doi: 10.1016/j.msea.2008.04.051.
[19] J.G. Park, et al. Thermal conductivity of MWCNT/epoxy composites: The effects of length, alignment and functionalization. Carbon, 50(6):2083–2090, 2012. doi: 10.1016/j.carbon.2011.12.046.
[20] B. Singaravel and T. Selvaraj. Optimization of machining parameters in turning operation using combined TOPSIS and AHP method. Tehnički Vjesnik, 22 (6):1475–1480, 2015. doi: 10.17559/TV-20140530140610.
[21] N. Kaushik and S. Singhal. Hybrid combination of Taguchi-GRA-PCA for optimization of wear behavior in AA6063/SiC p matrix composite. Production & Manufacturing Research, 6(1):171–189, 2018. doi: 10.1080/21693277.2018.1479666.
[22] S.O.N. Raj and S. Prabhu. Analysis of multi objective optimisation using TOPSIS method in EDM process with CNT infused copper electrode. International Journal of Machining and Machinability of Materials, 19(1):76–94, 2017. doi: 10.1504/IJMMM.2017.081190.
[23] S. Chakraborty. Applications of the MOORA method for decision making in manufacturing environment. International Journal of Advanced Manufacturing Technology, 54(9-12):1155–1166, 2011. doi: 10.1007/s00170-010-2972-0.
[24] M.P. Jenarthanan and R. Jeyapaul. Optimisation of machining parameters on milling of GFRP composites by desirability function analysis using Taguchi method. International Journal of Engineering, Science and Technology, 5(4):23–36, 2013. doi: 10.4314/ijest.v5i4.3.
[25] T.V. Sibalija. Particle swarm optimisation in designing parameters of manufacturing processes: A review (2008–2018). Applied Soft Computing, 84:105743, ISSN 1568-4946, doi: 10.1016/j.asoc.2019.105743.
[26] J. Kennedy and R. Eberhart. Particle swarm optimization. In Proceedings of the ICNN'95 – International Conference on Neural Networks, pages 1942–1948, Perth, Australia, 27 Nov.–1 Dec. 1995. doi: 10.1109/ICNN.1995.488968.
[27] F. Cus and J. Balic. Optimization of cutting process by GA approach. Robotics and Computer-Integrated Manufacturing, 19(1-2):113–121, 2003. doi: 10.1016/S0736-5845(02)00068-6.
[28] M.N. Ab Wahab, S. Nefti-Meziani, and A. Atyabi. A comprehensive review of swarm optimization algorithms. PLoS One, 10(5): e0122827, 2015. doi: 10.1371/journal.pone.0122827.
[29] A. Del Prete, R. Franchi, and D. De Lorenzis. Optimization of turning process through the analytic flank wear modelling. AIP Conference Proceedings, 1960:070008, 2018.doi: 10.1063/1.5034904.
[30] G. Xu and Z. Yang. Multiobjective optimization of process parameters for plastic injection molding via soft computing and grey correlation analysis. International Journal of Advanced Manufacturing Technology, 78(1–4):525–536, 2015. doi: 10.1007/s00170-014-6643-4.
[31] H. Juan, S.F. Yu, and B.Y. Lee. The optimal cutting parameter selection of production cost in HSM for SKD61 tool steels. International Journal of Machine Tools and Manufacturing, 43 (7):679–686, 2003. doi: 10.1016/S0890-6955(03)00038-5.
[32] U. Zuperl and F. Cus. Optimization of cutting conditions during cutting by using neural networks. Robotics and Computer-Integrated Manufacturing, 19(1-2):189–199, 2003. doi: 10.1016/S0736-5845(02)00079-0.
[33] P.E. Amiolemhen and A.O.A. Ibhadode. Application of genetic algorithms – determination of the optimal machining parameters in the conversion of a cylindrical bar stock into a continuous finished profile. International Journal of Machine Tools and Manufacture, 44(12-13):1403–1412, 2004. doi: 10.1016/j.ijmachtools.2004.02.001.
[34] E.O. Ezugwu, D.A. Fadare, J. Bonney, R.B. Da Silva, and W.F. Sales. Modeling the correlation between cutting and process parameters in high-speed machining of Inconel 718 alloy using an artificial neural network. International Journal of Machine Tools and Manufacturing, 45(12-13):1375–1385, 2005. doi: 10.1016/j.ijmachtools.2005.02.004.
[35] P. Asokan, N. Baskar, K. Babu, G. Prabhakaran, and R. Saravanan. Optimization of surface grinding operation using particle swarm optimization technique. Journal of Manufacturing Science and Engineering, 127(4):885–892, 2015. doi: 10.1115/1.2037085.
[36] R.Q. Sardinas, M.R. Santana, and E.A. Brindis. Genetic algorithm-based multio-bjective optimization of cutting parameters in turning processes. Engineering Applications of Artificial Intelligence, 19(2):127–133, 2006. doi: 10.1016/j.engappai.2005.06.007.
[37] C. Jia and H. Zhu. An improved multiobjective particle swarm optimization based on culture algorithms. Algorithms, 10(2):46–56, 2017. doi: 10.3390/a10020046.
[38] C.A. Coello Coello, G.T. Pulido, and M.S. Lechuga. Handling multiple objectives with particle swarm optimization. IEEE Transactions on Evolutionary Computation, 8(3):256–279, 2004. doi: 10.1109/TEVC.2004.826067.
[39] C.R. Raquel and P.C. Naval. An effective use of crowding distance in multiobjective particle swarm optimization. In: Proceedings of the 7th Annual Conference on Genetic and Evolutionary Computation, pages 257–264, Washington DC, USA, 2005. doi: 10.1145/1068009.1068047.
[40] G.T. Pulido and C.A. Coello Coello. Using clustering techniques to improve the performance of a multi-objective particle swarm optimizer. In: Proceedings of the Genetic and Evolutionary Computation Conference (GECCO), pages 225-237, Seattle, USA, 2004. doi: 10.1007/978-3-540-24854-5_20.
[41] S. Mostaghim and J. Teich. Strategies for finding good local guides in multi-objective particle swarm optimization (MOPSO). In: Proceedings of the 2003 IEEE Swarm Intelligence Symposium (SIS'03), pages 26–33, Indianapolis, IN, USA, 26 April 2003. doi: 10.1109/SIS.2003.1202243.
[42] J. Branke and S. Mostaghim. About selecting the personal best in multi-objective particle swarm optimization. In Proceedings of the Parallel Problem Solving From Nature (PPSN Ix) International Conference, pages 523–532, Reykjavik, Iceland, 9–13 September 2006. doi: 10.1007/11844297_53.
[43] T.M. Chenthil Jegan and D. Ravindran. Electrochemical machining process parameter optimization using particle swarm optimization. Computational Intelligence, 33:1019–1037, 2017. doi: 10.1111/coin.12139.
[44] C.P. Mohanty, S.S. Mahapatra, and M.R. Singh. A particle swarm approach for multi-objective optimization of electrical discharge machining process. Journal of Intelligent Manufacturing, 27:1171–1190, 2016. doi: 10.1007/s10845-014-0942-3.
[45] U. Natarajan, V.M. Periasamy, and R. Saravanan. Application of particle swarm optimisation in artificial neural network for the prediction of tool life. The International Journal of Advanced Manufacturing Technology, 31:871–876, 2007. doi: 10.1007/s00170-005-0252-1.
[46] A.K. Gandhi, S.K. Kumar, M.K. Pandey, and M.K. Tiwari. EMPSO-based optimization for inter-temporal multi-product revenue management under salvage consideration. Applied Soft Computing, 11(1):468–476, 2011. doi: 10.1016/j.asoc.2009.12.006.
[47] J.J. Yang, J.Z. Zhou, W. Wu, and F. Liu. Application of improved particle swarm optimization in economic dispatching. Power System Technology, 29(2):1–4, 2005.
[48] T. Sibalija, S. Pentronic, and D. Milovanovic. Experimental optimization of nimonic 263 laser cutting using a particle swarm approach. Metals, 9:1147, 2019. doi: 10.3390/met9111147.
[49] X. Luan, H. Younse, H. Hong, G.P. Peterson. Improving mechanical properties of PVA based nano composite using aligned single-wall carbon nanotubes. Materials Research Express, 6 (10):1050a6, 2019. doi: 10.1088/2053-1591/ab4058.
[50] H. Younes, R.A. Al-Rub, M.M. Rahman, A. Dalaq, A.A. Ghaferi, and T. Shah. Processing and property investigation of high-density carbon nanostructured papers with superior conductive and mechanical properties. Diamond and Related Materials, 68:109–117, 2016. doi: 10.1016/j.diamond.2016.06.016.
[51] G. Christensen, H. Younes, H. Hong, and G.P. Peterson. Alignment of carbon nanotubes comprising magnetically sensitive metal oxides by nonionic chemical surfactants. Journal of Nanofluids, 2(1): 25–28, 2013. doi: 10.1166/jon.2013.1031.
[52] H. Younes, M.M. Rahman, A.A. Ghaferi, and I. Saadat. Effect of saline solution on the electrical response of single wall carbon nanotubes-epoxy nanocomposites. Journal of Nanomaterials, 2017: 6843403, 2017 doi: 10.1155/2017/6843403.
[53] H. Younes, G. Christensen, L. Groven, H. Hong, and P. Smith. Three dimensional (3D) percolation network structure: Key to form stable carbon nano grease. Journal of Applied Research and Technology, 14(6):375–382, 2016. doi: 10.1016/j.jart.2016.09.002.
[54] J. Jerald, P. Asokan, G. Prabaharan, and R. Saravanan. Scheduling optimization of flexible manufacturing systems using particle swarm optimization algorithm. The International Journal of Advanced Manufacturig Technology, 25:964–971, 2005. doi: 10.1007/s00170-003-1933-2.
[55] M. Ghasemi, E. Akbari, A. Rahimnejad, S.E. Razavi, S. Ghavidel, and L. Li. Phasor particle swarm optimization: a simple and efficient variant of PSO. Soft Computing, 23:9701–9718, 2019. doi: 10.1007/s00500-018-3536-8.
[56] M.R. Singh and S.S. Mahapatra. A swarm optimization approach for flexible flow shop scheduling with multiprocessor tasks. The International Journal of Advanced Manufacturing Technology, 62(1–4), 267–277, 2012. doi: 10.1007/s00170-011-3807-3.
[57] H. Yoshida, K. Kawata, Y. Fukuyama, S. Takayama, and Y. Nakanishi. A particle swarm optimization for reactive power and voltage control considering voltage security assessment. IEEE Transactions on Power Systems, 15(4):1232–1239, 2000. doi: 10.1109/59.898095.
[58] F. Belmecheri, C. Prins, F. Yalaoui, and L. Amodeo. Particle swarm optimization algorithm for a vehicle routing problem with heterogeneous fleet, mixed backhauls, and time windows. Journal of Intelligent Manufacturing, 24(4):775–789, 2013. doi: 10.1007/s10845-012-0627-8.
[59] M. Bachlaus, M.K. Pandey, C. Mahajan, R. Shankar, and M.K. Tiwari. Designing an integrated multi-echelon agile supply chain network: a hybrid taguchi-particle swarm optimization approach. Journal of Intelligent Manufacturing, 19(6):747–761, 2008. doi: 10.1007/s10845-008-0125-1.
[60] B. Brandstatter and U. Baumgartner. Particle swarm optimization – mass-spring system analogon. IEEE Transactions on Magnetics, 38(2):997–1000, 2002. doi: 10.1109/20.996256.
[61] B. Kim and S. Son. A probability matrix-based particle swarm optimization for the capacitated vehicle routing problem. Journal of Intelligent Manufacturing, 23(4):1119–1126, 2012. doi: 10.1007/s10845-010-0455-7.
[62] C.H. Wu, D.Z. Wang, A. Ip, D.W. Wang, C.Y. Chan, and H.F. Wan. A particle swarm optimization approach for components placement inspection on printed circuit boards. Journal of Intelligent Manufacturing, 20(5):535–549, 2009. doi: 10.1007/s10845-008-0140-2.
[63] S.B. Raja and N. Baskar. Application of particle swarm optimization technique for achieving desired milled surface roughness in minimum machining time. Expert Systems with Applications, 39(5):5982–5989, 2012. doi: 10.1016/j.eswa.2011.11.110.
[64] N. Yusup, A.M. Zain, and S.Z.M. Hashim. Overview of PSO for optimizing process parameters of machining. Procedia Engineering, 29:914–923, 2012. doi: 10.1016/j.proeng.2012.01.064.
[65] R.L. Malghan, K.M.C. Rao, A.K. Shettigar, S.S. Rao, and R.J. D'Souza. Application of particle swarm optimization and response surface methodology for machining parameters optimization of aluminium matrix composites in milling operation. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 39(9):2541–3553, 2017. doi: 10.1007/s40430-016-0675-7.
[66] A. Hadidi, A. Kaveh, B. Farahmand Azar, S. Talatahari, and C. Farahmandpour. An efficient optimization algorithm based on particle swarm and simulated annealing for space trusses. International Journal of Optimization in Civil Engineering, 3:377–395, 2011.
[67] T. Chaudhary, A.N. Siddiquee, A.K. Chanda, and Z.A. Khan. On micromachining with a focus on miniature gears by non conventional processes: a status report. Archive of Mechanical Engineering, 65(1):129–169, 2018. doi: 10.24425/119413.
[68] D. Kumar and K.K Singh. An experimental investigation of surface roughness in the drilling of MWCNT doped carbon/epoxy polymeric composite material. IOP Conference Series: Materials Science and Engineering, 149:012096, 2016. doi: 10.1088/1757-899X/149/1/012096.
[69] Niharika, B.P. Agrawal, I.A. Khan, and Z.A. Khan. Effects of cutting parameters on quality of surface produced by machining of titanium alloy and their optimization. Archive of Mechanical Engineering, 63(4):531–548, 2016. doi: 10.1515/meceng-2016-0030.
[70] N.S. Kumar, A. Shetty, Ashay Shetty, K. Ananth, and H. Shetty. Effect of spindle speed and feed rate on surface roughness of carbon steels in CNC turning. Procedia Engineering, 38:691– 697, 2012. doi: 10.1016/j.proeng.2012.06.087.
[71] E.T. Akinlabi, I. Mathoho, M.P. Mubiayi, C. Mbohwa, and M.E. Makhatha. Effect of process parameters on surface roughness during dry and flood milling of Ti-6A-l4V. In: 2018 IEEE 9th International Conference on Mechanical and Intelligent Manufacturing Technologies (ICMIMT), pages 144–147, Cape Town, South Africa, 10-13 February 2018. doi: 10.1109/ICMIMT.2018.8340438.
[72] J.P. Davim, L.R. Silva, A. Festas, and A.M. Abrão. Machinability study on precision turning of PA66 polyamide with and without glass fiber reinforcing. Materials & Design, 30(2):228– 234, 2009. doi: 10.1016/j.matdes.2008.05.003.
[73] J. Cha, J. Kim, S. Ryu, and S.H. Hong. Comparison to mechanical properties of epoxy nanocomposites reinforced by functionalized carbon nanotubes and graphene nanoplatelets. Composites Part B: Engineering, 162:283–288, 2018. doi: 10.1016/j.compositesb.2018.11.011.
[74] R.V. Rao, P.J. Pawar, and R. Shankar. Multi-objective optimization of electrochemical machining process parameters using a particle swarm optimization algorithm. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 222(8):949–958, 2008. doi: 10.1243/09544054JEM1158.
[75] R. Farshbaf Zinati, M.R. Razfar, and H. Nazockdast. Surface integrity investigation for milling PA6/ MWCNT. Materials and Manufacturing Processes, 30(8):1035–1041, 2014. doi: 10.1080/10426914.2014.961473.
[76] I. Shyha, G.Y. Fu, D.H. Huo, B. Le, F. Inam, M.S. Saharudin, and J.C. Wei. Micro-machining of nano-polymer composites reinforced with graphene and nano-clay fillers. Key Engineering Materials, 786:197–205, 2018. doi: 10.4028/www.scientific.net/kem.786.197.
[77] G. Fu, D. Huo, I. Shyha, K. Pancholi, and M.S. Saharudin. Experimental investigation on micro milling of polyester/halloysite nano-clay nanocomposites. Nanomaterials, 9(7):917, 2019. doi: 10.3390/nano9070917.
Go to article

Authors and Affiliations

Prakhar Kumar Kharwar
1
Rajesh Kumar Verma
1
Nirmal Kumar Mandal
2
Arpan Kumar Mondal
2

  1. Department of Mechanical Engineering, Madan Mohan Malaviya University of Technology Gorakhpur, India.
  2. Department of Mechanical Engineering, National Institute of Technical Teachers’ Training and Research, Kolkata, India.
Download PDF Download RIS Download Bibtex

Abstract

Polymer mixed-matrix nanocomposite membranes were prepared by a wet-phase inversion method and used in ultrafiltration processes to treat wastewater treatment plant effluent spiked with organic micropollutants. The effects of halloysite (Hal), TiO2, and functionalized single-walled carbon nanotube (SWCNT-COOH) nanofillers on the treatment efficiency, permeability loss, and fouling behavior of polyethersulfone (PES) membranes were investigated and compared with those of a pristine PES membrane. The nanocomposite membranes exhibited lower porosity and stronger negative surface charge because of the added hydrophilic nanofillers. The PES-Hal membrane achieved the optimal balance of permeability and micropollutant removal owing to enhanced pollutant adsorption on the membrane surface and the creation of an easily removable cake layer (i.e., reversible fouling). The PES-SWCNT-COOH membrane demonstrated the highest treatment efficiency, but also the high permeability loss. In contrast, PES-TiO2 exhibited excellent antifouling properties, but poorer treatment capabilities.
Go to article

Bibliography

  1. Adeniyi, A., Mbaya, R., Popoola, P., Gomotsegang, F., Ibrahim, I. & Onyango, M. (2020). Predicting the fouling tendency of thin film composite membranes using fractal analysis and membrane autopsy, Alexandria Engineering Journal, 59, 6, pp. 4397-4407. DOI:10.1016/j.aej.2020.07.046
  2. Arif, Z., Sethy, N.K., Mishra, P.K. & Verma, B. (2019). Antifouling behaviour of PVDF/TiO2 composite membrane: a quantitative and qualitative assessment, Iranian Polymer Journal, 19, 28, pp. 301-312. DOI:10.1007/s13726-019-00700-y
  3. Bassyouni, M., Abdel-Aziz, M.H., Zoromba, M.Sh., Abdel-Hamid, S.M.S. & Drioli, E. (2019). A review of polymeric nanocomposite membranes for water purification, Journal of Industrial and Engineering Chemistry, 73, pp. 19-46. DOI:10.1016/j.jiec.2019.01.045
  4. Bodzek, M., Konieczny, K. & Kwiecińska-Mydlak, A. (2021). New generation of semipermeable membranes with carbon nanotubes for water and wastewater treatment: Critical review, Archives of Environmental Protection, 47, 3, pp. 3-27, DOI:10.24425/aep.2021.138460
  5. Bohdziewicz, J., Dudziak, M., Kamińska, G. & Kudlek, E. (2016). Chromatographic determination and toxicological potential evaluation of selected micropollutants in aquatic environment - analytical problems, Desalination and Water Treatment, 57, pp. 1361-1369. DOI:10.1080/19443994.2015.1017325
  6. Bu, F., Gao, B., Yue, Q., Liu, C., Wang, W. & Shen, X. (2019). The Combination of Coagulation and Adsorption for Controlling Ultrafiltration Membrane Fouling in Water Treatment, Water, 11, pp. 1-13. DOI:10.3390/w11010090
  7. Buruga, K., Song, H., Shan, J., Bolan, N., Thimmarajampet Kalathi, J. & Kim, K-H. (2019). A review on functional polymer-clay based nanocomposite membranes for treatment of water, Journal of Hazardous. Materials, 379, pp. 1-27. DOI:10.1016/j.jhazmat.2019.04.067
  8. Dudziak, M. & Burdzik-Niemiec, E. (2017). Ultrafiltration through modified membranes in wastewater treatment containing 17β-estradiol and bisphenol A, Przemysł Chemiczny, 96, pp. 448-452, DOI: 10.15199/62.2017.2.35 (in Polish).
  9. Esfahani, M.R., Aktij, S.A., Dabaghian, Z., Firouzjaei, M.D., Rahimpour, A., Eke, J.; Escobar, I.C., Abolhassani, M., Greenlee, L.F., Esfahani, A.R., Sadmani, A. & Koutahzadeh, N. (2019). Nanocomposite membranes for water separation and purification: Fabrication, modification, and applications, Separation and Purification Technolology, 213, pp. 465-499. DOI:10.1016/j.seppur.2018.12.050
  10. Farjami, M., Vatanpour, V. & Moghadassi, A. (2020). Effect of nanoboehmite/poly(ethylene glycol) on the performance and physiochemical attributes EPVC nano-composite membranes in protein separation, Chemical Engineering Research and Design, 156, pp. 371-383. DOI:10.1016/j.cherd.2020.02.009
  11. Gamoń, F., Tomaszewski, M., Cema, G. & Ziembińska-Buczyńska, A. (2022). Adsorption of oxytetracycline and ciprofloxacin on carbon-based nanomaterials as affected by pH, Archives of Environmental Protection, 48, 2, pp. 34-41. DOI:10.24425/aep.2022.140764
  12. Ghaemi, N., Madaeni, S.S., Alizadeh, A., Rajabi, H. & Daraei, P. (2011). Preparation, characterization and performance of polyethersulfone/organically modified montmorillonite nanocomposite membranes in removal of pesticides, Journal of Membrane Science, 382, pp. 135-147. DOI:10.1016/j.memsci.2011.08.004
  13. Haas, R., Opitz, R. & Grischek, T. (2019). The AquaNES Project: Coupling Riverbank Filtration and Ultrafiltration in Drinking Water Treatment, Water, 11, pp. 1-14. DOI:10.3390/w11010018.
  14. Hao, S., Jia, Z., Wen, J., Li, S., Peng, W., Huang, R. & Xu, X. (2021). Progress in adsorptive membranes for separation – A review, Separation and Purification Technology, 255, 117772. DOI:10.1016/j.seppur.2020.117772.
  15. Inurria, A., Cay-Durgun, P., Rice, D., Zhang, H., Seo, D.-K., Lind, M.L. & Perreault, F. (2019). Polyamide thin-film nanocomposite membranes with graphene oxide nanosheets: Balancing membrane performance and fouling propensity, Desalination, 451, pp. 139-147. DOI:10.1016/j.desal.2018.07.004.
  16. Kamińska, G. (2022). Modification of ultrafiltration membranes with nanoparticles and their application, Wydawnictwo Politechniki Śląskiej, Gliwice 2022. (in Polish)
  17. Kamińska, G. & Bohdziewicz, J. (2018). Separation of selected organic micropollutants on ultrafiltration membrane modified with carbon nanotubes.Ochrona. Środowiska, 40, 4, pp. 37-42. (in Polish)
  18. Kamińska, G., Bohdziewicz, J., Calvo, J.I., Prádanos, P., Palacio, L. & Hernández, A. (2015). Fabrication and characterization of polyethersulfone nanocomposite membranes for the removal of endocrine disrupting micropollutants from wastewater. Mechanisms and performance, Journal of Membrane Science, 493, pp. 66-79. DOI:10.1016/j.memsci.2015.05.047
  19. Kamińska, G., Bohdziewicz, J., Palacio, L., Hernández, A. & Prádanos, P. (2016). Polyacrylonitrile membranes modified with carbon nanotubes: characterization and micropollutants removal analysis, Desalination and Water Treatment, 57, pp. 1344-1353. DOI:10.1080/19443994.2014.1002277
  20. Kamińska, G., Pronk, W. & Traber, J. (2020). Effect of coagulant dose and backflush pressure on NOM membrane fouling in inline coagulation-ultrafiltration, Desalination and Water Treatment, 199, pp. 188-197. DOI:10.5004/dwt.2020.25657.
  21. Leo, C.P.; Chai, W.K.; Mohammad, A.W., Qi, Y., Hoedley, A.F.A. & Chai, S.P. (2011). Phosphorus removal using nanofiltration membranes, Water Science and Technology 64, pp.199-205. DOI:10.2166/wst.2011.598.
  22. Mao, Y., Huang, Q. Meng, B., Zhou, K., Liu, G., Gigliuzza, A., Drioli, E. & Jin, W. (2020). Roughness-enhanced hydrophobic graphene oxide membrane for water desalination via membrane distillation, Journal of Membrane Science, 611, 118364. DOI:10.1016/j.memsci.2020.118364.
  23. Marszałek, A. (2022). Encapsulation of halloysite with sodium alginate and application in the adsorption of copper from rainwater, Archives of Environmental Protection, 48, 1, pp. 75-82. DOI:10.24425/aep.2022.140546.
  24. Maximous, N., Nakhla, G., Wan, W. & Wong, K. (2009). Preparation, characterization and performance of Al2O3/PES membrane for wastewater filtration, Journal of Membrane Science, 341, pp. 67–75. DOI:10.1016/j.memsci.2009.05.040.
  25. Mozia, S.; Grylewicz, A.; Zgrzebnicki, M.; Darowna, D. & Czyżewski, A. (2019). Investigations on the properties and performance of mixed matrix polyethersulfone membranes modified with halloysite nanotubes, Polymers-Basel. 11, 671, pp. 1-18. DOI:10.3390/polym11040671.
  26. Muthumareeswaran, M.R. & Agarwal, G.P. (2014). Feed concentration and pH effect on arsenate and phosphate rejection via polyacrylonitrile ultrafiltration membrane, Journal of Membrane Science, 468, pp. 11-19. DOI:10.1016/j.memsci.2014.05.040.
  27. Nasir, A., Masood, F., Yasin, T. & Hammed, A. (2019). Progress in polymeric nanocomposite membranes for wastewater treatment: Preparation, properties and applications, Journal of Industrial and Engineering Chemistry, 79, pp. 29-40. DOI:10.1016/j.jiec.2019.06.052.
  28. Nguyen, M.N., Trinh, P.B., Butkhardt, C.J. & Schafer, A.I. (2021). Incorporation of single-walled carbon nanotubes in ultrafiltration support structure for the removal of steroid hormone micropollutants, Separation and Purification Technology, 264, 118405. DOI:10.1016/j.seppur.2021.118405.
  29. Niedergall, K., Bach, M., Hirth, T., Tovar, G.E.M. & Schiestel, T. (2014). Removal of micropollutants from water by nanocomposite membrane adsorbers, Separation and Purification Technology, 131, 27, pp. 60-68. DOI:10.1016/j.seppur.2014.04.032.
  30. Rogowska, J., Cieszynska-Semenowicz, M., Ratajczyk, W. & Wolska, L. (2020). Micropollutants in treated wastewater, Ambio, 49(2), pp. 487-503. DOI:10.1007/s13280-019-01219-5
  31. Saki, H., Alemayehu, E., Schomburg, J. & Lennartz, B. (2019). Halloysite nanotubes as adsorptive material for phosphate removal from aqueous solution, Water 11, 2, 203. DOI:10.3390/w11020203.
  32. Shaban, M., AbdAllah, H., Said, L. & Ahmed, A.M. (2019). Water desalination and dyes separation from industrial wastewater by PES/TiO2NTs mixed matrix membranes, Journal of Polymer Research, 26, 181, pp. 1-12. DOI:10.1007/s10965-019-1831-4.
  33. Shakak, M., Rezaee, R., Maleki, A., Jafari, A., Safari, M., Shahmoradi, B., Daraei, H. & Lee, S-M. (2019). Synthesis and characterization of nanocomposite ultrafiltration membrane (PSF/PVP/SiO2) and performance evaluation for the removal of amoxicillin from aqueous solutions, Environmental Technology & Innovation, 17, 100529. DOI:10.1016/j.eti.2019.100529.
  34. Suhalim, N.S., Kasim, N., Mahmoudi, E., Shamsudin, I.J., Mohammad, A.W., Zuki, F.M. & Jamari, N. (2022). Rejection Mechanism of Ionic Solute Removal by Nanofiltration Membranes: An Overview, Nanomaterials, 12, 437. DOI:10.3390/nano12030437.
  35. Vatanpour, V., Mansourpanah, Y., Soroush Mousavi Khadem, S., Zinadini, S., Dizge, N., Reza Ganjali, M., Mirsadeghi, S., Rezapour, M., Reza Saeb, M. & Karimi-Male, H. (2021). Nanostructured polyethersulfone nanocomposite membranes for dual protein and dye separation: Lower antifouling with lanthanum (III) vanadate nanosheets as a novel nanofiller, Polymer Testing, 94, pp. 107040. DOI:10.1016/j.polymertesting.2020.107040.
  36. Vatanpour, V., Madaeni, S.S., Rajabi, L., Zinadini, S. & Derakhshan, A.A. (2012). Boehmite nanoparticles as a new nanofiller for preparation of antifouling mixed matrix membranes, Journal of Membrane Science, 401-402, pp. 132-143. DOI:10.1016/j.memsci.2012.01.040.
  37. Wang, S., Yao, S., Du, K., Yuan, R., Chen, H., Wang, F. & Zhou, B. (2021). The mechanisms of conventional pollutants adsorption by modified granular steel slag, Environmental Engineering Research, 26, 1, 190352. DOI:10.4491/eer.2019.352.
  38. Zhang, J., Nguyen, M.N., Li, Y., Yang, C. & Schafer, A.I. (2020). Steroid hormone micropollutant removal from water with activated carbon fiber-ultrafiltration composite membranes, Journal of Hazardous Materials, 391, 122020. DOI:10.1016/j.jhazmat.2020.122020.
  39. Zhang, X., Wang, D.K., Lopez, D.R.S. & Diniz da Costa, J. (2014). Fabrication of nanostructured TiO2 hollow fiber photocatalytic membrane and application for wastewater treatment, Chemical Engineering Journal, 236, pp. 314-322. DOI:10.1016/j.cej.2013.09.059.
Go to article

Authors and Affiliations

Gabriela Kamińska
1
ORCID: ORCID

  1. Institute of Water and Wastewater Engineering, Gliwice, Poland
Download PDF Download RIS Download Bibtex

Abstract

Nanostructured systems based on ZnO nanoparticles composite systems/polymer fibers have attracted a lot of attention in the last years because of their applications in multiple areas. Nanofibres based on polymers are used in many domains such as nanocatalysis, controlled release of medicines, environmental protection and so on. This work show the synthesis of cellulose acetate butyrate (CAB) nanofiber useful as substrates for growing ZnO nanocrystals and that ZnO is an unorganic metal oxide nanoparticle used to improve the piezoelectric properties of the polymer. The piezoelectric propertiesof ZnO-doped polymeric was investigated with atomic force microscopy and measurements were performed, in contact technique, in piezoelectric response mode (PFM).In order to analyze the structural and textural features, the obtained materials were characterized using advanced physical-chemical techniques such as X-ray diffraction (XRD), Atomic Force Microscopy (AFM), Scanning Electron Microscopy (SEM). The XRD patterns show the characteristic reflections of ZnO with a hexagonal type wurtzit structure and the broad peaks of the polymer. The SEM images reveal the presence of ZnO nanoparticles on top of the polymer nanofibres.In most ZnO-based nanocomposites their morphology is uncontrolled (agglomerated granules), but in ase of using cellulose acetobutyrate this becomes controlled by observing through flower-like structures SEM and AFM) The study of the functional properties of ZnO/polymer fiber composite systems showed that they have piezoelectric properties which give them the characteristics of smart material with possible sensor and actuator applications.Recent literature reports that the synthesis and characterization of ZnO-polymer nanocomposites are more flexible materials for various applications.
Go to article

Authors and Affiliations

G. Calin
1
ORCID: ORCID
L. Sachelarie
1
ORCID: ORCID
N. Olaru
2
ORCID: ORCID

  1. Apollonia University of Iasi, Faculty of Dental Medicine, 11 Pacurari Str., 700511, Iasi, Romania
  2. Institute of Macromolecular Chemistry “Petru Poni” Iasi, Aleea Grigore Ghica Voda,41A, 700487, Iasi, Romania
Download PDF Download RIS Download Bibtex

Abstract

The present work investigated the properties of rubber vulcanizates containing different nanoparticles (Cloisite 20A and Cloisite Na+) and prepared using different sonication amplitudes. The results showed that a maximum improvement in tensile strength of more than 60% over the reference sample was obtained by the nanocomposites containing 2 wt.% Cloisite 20A and 1 wt.% Cloisite Na+ and mixed with a maximum amplitude of 270 µm. The modulus at 300% elongation increased by approximately 18% and 25% with the addition of 2 wt.% Cloisite 20A and 3 wt.% Cloisite Na+, respectively. The shape retention coefficient of rubber samples was not significantly affected by the mixing amplitude, while the values of the softness measured at the highest amplitude (270 µm) were higher compared to those of mixtures homogenized with lower amplitudes. The loading-unloading and loading-reloading processes showed similar trends for all tested nanocomposites. However, they increased with increasing levels of sample stretching but were not significantly affected by filler content at a given elongation. More energy was dissipated during the loading-unloading process than during the loading-reloading. SEM micrographs of rubber samples before and after cycling loading showed rough, stratified, and elongated morphologies. XRD results showed that elastomeric chains were intercalated in the MMT nanosheets, confirming the improvement of mechanical properties. The difference between the hydrophilic pristine nanoclay (Cloisite Na+) and organomodified MMT (Cloisite 20A) was also highlighted, while the peaks of the stretched rubber samples were smaller, regardless of the rubber composition, due most probably to the decrease of interlayer spacing.
Go to article

Authors and Affiliations

Anita Białkowska
1
Małgorzata Przybyłek
1
Marta Sola-Wdowska
1
Milan Masař
2
Mohamed Bakar
1
ORCID: ORCID

  1. University of Technology and Humanities in Radom, Faculty of Chemical Engineering and Commodity Science, Poland
  2. Tomaš Bata University in Zlin, Centre of Polymer Systems, Czech Republic
Download PDF Download RIS Download Bibtex

Abstract

The addition of hard ceramic particles of nc-(Ti,Mo)C in carbon network into Ti matrix has been proved to be an efficient way to enhance their properties. The purpose of this work was to analyze the corrosion, tribological, mechanical and morphological effects of combining nc-(Ti,Mo)C/C with titanium metal, to create a unique composite via selective laser melting technique (SLM). Composites with different weight percentage (5, 10 and 20 wt %) of ceramic phase were produced. The samples of pure Ti and Ti-6Al-4V alloy were also tested, as a reference. These composites were examined for corrosion resistance in body fluid (artificial saliva solution). Moreover, the properties of titanium composites reinforced with nc-TiC powders were compared. It was stated that mechanical properties were significantly improved with increasing amount of nc-(Ti,Mo)C/C in Ti matrix. In terms of corrosion resistance, the composites showed worse properties compared to pure titanium and Ti-6Al-4V alloy, but better than TiC-reinforced composites.

Go to article

Authors and Affiliations

P. Figiel
A. Biedunkiewicz
W. Biedunkiewicz
D. Grzesiak
M. Pawlyta
Download PDF Download RIS Download Bibtex

Abstract

A ceria loaded carbon nanotubes (CeO2/CNTs) nanocomposites photocatalyst was prepared by chemical precipitation, and the preparation conditions were optimized using an orthogonal experiment method. HR-TEM, XRD, UV-Vis/DRS, TGA and XPS were used to characterize the photocatalyst. Nitrogen adsorption-desorption was employed to determine the BET specific surface area. The results indicated that the photocatalyst has no obvious impurities. CeO2 was dispersed on the carbon nanotubes with a good loading effect and high loading efficiency without agglomeration. The catalyst exhibits a strong ability to absorb light in the ultraviolet region and some ability to absorb light in the visible light region. The CeO2/CNTs nanocomposites photocatalyst was used to degrade azo dye Acid Orange 7 (40 mg/L). The optical decolorization rate was 66.58% after xenon lamp irradiation for 4 h, which is better than that of commercial CeO2 (43.13%). The results suggested that CeO2 loading on CNTs not only enhanced the optical decolorization rate but also accelerated the separation of CeO2/CNTs and water.

Go to article

Authors and Affiliations

Tao Wen
Yu-bin Tang
Fang-yan Chen
Bing-yu Mo
Download PDF Download RIS Download Bibtex

Abstract

Constantly developing nanotechnology provides the possibility of manufacturing nanostructured composites with a polymer matrix doped with ceramic nanoparticles, including ZnO. A specific feature of polymers, i.e. ceramic composite materials, is an amelioration in physical properties for polymer matrix and reinforcement. The aim of the paper was to produce thin fibrous composite mats, reinforced with ZnO nanoparticles and a polyvinylpyrrolidone (PVP) matrix obtained by means of the electrospinning process and then examining the influence of the strength of the reinforcement on the morphology and optical properties of the composite nanofibers. The morphology and structure of the fibrous mats was examined by a scanning electron microscope (SEM) with an energy dispersive spectrometer (EDS) and Fourier-transform infrared spectroscopy (FTIR). UV –Vis spectroscopy allowed to examine the impact of zinc oxide on the optical properties of PVP/ZnO nanofibers and to investigate the width of the energy gap.

Go to article

Authors and Affiliations

W. Matysiak
T. Tański
M. Zaborowska
Download PDF Download RIS Download Bibtex

Abstract

The aim of this research was to develop a composite material to be used as an elastomeric core of the artificial intervertebral disc. Two types of polyurethane composites with non-modified SiO2 and SiO2 modified NH2 group were obtained. The composites made of these materials have different filler content. The effect of modifying fillers for the structure and properties of these materials were investigated.

Go to article

Authors and Affiliations

Bartłomiej Waśniewski
Joanna Ryszkowska
Konstanty Skalski
Marek Pawlikowski
Download PDF Download RIS Download Bibtex

Abstract

This work presents a theoretical study for the distribution of nanocomposite structure of plasmonic thin-film solar cells through the absorber layers. It can be reduced the material consumption and the cost of solar cell. Adding nanometallic fillers in the absorber layer has been improved optical, electrical characteristics and efficiency of traditional thin film solar cells (ITO /CdS/PbS/Al and SnO2/CdS/CdTe/Cu) models that using sub micro absorber layer. Also, this paper explains analysis of J-V, P-V and external quantum efficiency characteristics for nanocomposites thin film solar cell performance. Also, this paper presents the effect of increasing the concentration of nanofillers on the absorption, energy band gap and electron-hole generation rate of absorber layers and the effect of volume fraction on the energy conversion efficiency, fill factor, space charge region of the nanocomposites solar cells.

Go to article

Authors and Affiliations

Ahmed Thabet
Safaa Abdelhady
A.A. Ebnalwaled
A.A. Ibrahim
Download PDF Download RIS Download Bibtex

Abstract

The paper presents the results of research on nanocomposite nickel/graphene oxide (Ni / GO) coatings produced by electrochemical reduction method on a steel substrate. Discussed is the method of manufacturing composite coatings with nickel matrix and embedded graphene oxide flakes. For comparative purposes, the studies also included a nanocrystalline Ni coating without embedded graphene oxide flakes. Graphene oxide was characterized by Raman spectroscopy, infrared spectroscopy (FTIR) and transmission (TEM) and scanning (SEM) electron microscopy. Results of studies on the structure of nickel and composite Ni/GO coatings deposited in a bath containing different amount of graphene oxide are presented. The coatings were characterized by scanning electron microscopy, light microscopy, Raman spectroscopy and X-ray diffraction. The adhesion of the prepared coatings to the substrate was examined by the scratch method. The microhardness of the coatings was measured using the Vickers method on perpendicular cross-sections to the surface. Corrosion tests of the coatings were investigated using the potentiodynamic method. The influence of graphene oxide on the structure and properties of composite coatings deposited from baths with different content of graphene oxide was determined.

Go to article

Authors and Affiliations

G. Cieślak
M. Trzaska
Download PDF Download RIS Download Bibtex

Abstract

Nowadays, titanium is one of the most popular materials for aeronautical applications due to its good corrosion resistance, formability and strength. In this paper, rutile reinforced titanium matrix composites were produced via powder metallurgy. The steps included high energy ball milling of raw titanium and rutile powders in a planetary ball mill, which was followed by cold-pressing and sintering without external pressure. For the characterization of the milled powders and the sintered composites, scanning electron microscope, X-ray diffraction and compressive strength examinations were carried out. The results showed that the rutile has a strengthening effect on the titanium matrix. 1 wt% rutile increased the compressive strength compared to the raw titanium. Increasing the milling time of the metal matrix decreased the compressive strength values.

Go to article

Authors and Affiliations

D.A. Angel
T. Miko
M. Benke
Z. Gacsi
Download PDF Download RIS Download Bibtex

Abstract

Fe-based bulk metallic glasses (BMGs) have been extensively investigated due to their ultrahigh strength and elastic moduli as well as desire magnetic properties. However, these BMGs have few applications in industrial productions because of their brittleness at room temperature. This study is focused on the effect of cooling rate on the mechanical properties (especially toughness) in the Fe41Co7Cr15Mo14Y2C15B6 BMG. For this aim, two samples with the mentioned composition were fabricated in a water-cooled copper mold with a diameter of 2 mm, and in a graphite mold with a diameter of 3 mm. The formation of crystalline phases of Fe23(B, C)6, α-Fe and Mo3Co3C based on XRD patterns was observed after the partial crystallization process. To determine the toughness of the as-cast and annealed samples, the indentation technique was used. These results revealed that the maximum hardness and toughness were depicted in the sample casted in the water-cooled copper mold and annealed up to 928°C. The reason of it can be attributed to the formation of crystalline clusters in the amorphous matrix of the samples casted in the graphite mold, so that this decrease in the cooling rate causes to changing the chemical composition of the amorphous matrix.
Go to article

Authors and Affiliations

P. Rezaei-Shahreza
1
ORCID: ORCID
H. Redaei
1
ORCID: ORCID
P. Moosavi
1
ORCID: ORCID
S. Hasani
1
A. Seifoddini
1
ORCID: ORCID
B. Jeż
2
ORCID: ORCID
M. Nabiałek
2
ORCID: ORCID

  1. Yazd University, Department of Mining and Metallurgical Engineering, 89195-741, Yazd, Iran
  2. Częstochowa University of Technology, Faculty of Production Engineering and Materials Technology, Department of Physics, 19 Armii Krajowej Av., 42-200 Częstochowa, Poland
Download PDF Download RIS Download Bibtex

Abstract

A series of nanocomposite graphene/CoFe2O4 and graphene/NiFe2O4 hybrid materials was synthesized via facile, one-pot solvothermal route. The materials were obtained using two pressure methods: synthesis in the autoclave and synthesis in the microwave solvothermal reactor. The use of a microwave reactor enabled to significantly shorten the synthesis time up to 15 min. All the syntheses were carried out in a solution of ethanol. The effect of processing conditions and composite composition on the physicochemical properties and electric conductivity was studied. The specific surface area, density, morphology, phase composition, thermal properties and electric conductivity of the obtained composites were investigated. The results of studies of composites obtained in an autoclave and in a microwave reactor were compared.

Go to article

Authors and Affiliations

A. Jędrzejewska
D. Sibera
R. Pełech
R. Jędrzejewski
U. Narkiewicz
Download PDF Download RIS Download Bibtex

Abstract

The use of organically modified clays as nano-reinforcement in polymer matrices is widely investigated owing to their remarkable reinforcement at low filler loading. In this body of work, the nanocomposites were prepared by melt blending nanoclay with polyamide 11 (PA 11) utilising a twin-screw extruder in order to maximise the dispersion of clay particles within the matrix during compounding. The main aim of the work was to study the reinforcing effect of nanoclay within PA 11 using two micromechanical model namely Halpin-Tsai and Mori-Tanaka composite theories. These theories were used to predict the effective tensile modulus of PA 11 nanocomposites and the results were compared to the experimental data. In addition, the Halpin-Tsai model was used to predict the storage modulus and heat distortion temperature (HDT) of PA 11 nanocomposites. It was found that the tensile modulus for nanocomposites with a high clay aspect ratio exhibits up to 10% higher when compared to the nanocomposites with lower clay aspect ratio. Thus, it is believed that the combination of clay aspect ratio and modulus contributes to the super reinforcing effect of nanoclay within the PA 11 matrix.
Go to article

Authors and Affiliations

Khairul Anwar Abdul Halim
1 2
ORCID: ORCID
James E. Kennedy
3
ORCID: ORCID
Mohd Arif Anuar Mohd Salleh
1 2
ORCID: ORCID
Azlin Fazlina Osman
1 2
ORCID: ORCID
Mohd Firdaus Omar
1 2
ORCID: ORCID
N.M. Sunar
4
ORCID: ORCID

  1. Universiti Malaysia Perlis, Centre of Excellence Geopolymer and Green Technology (CEGeoGTech), 01000 Perlis, Malaysia
  2. Universiti Malaysia Perlis, Faculty of Chemical Engineering and Technology, Kompleks Pusat Pengajian Jejawi 3, Kawasan Perindustrian Jejawi, 02600, Arau, Perlis, Malaysia
  3. Athlone Institute of Technology, Dublin Road, Co. Westmeath , Ireland
  4. Universiti Tun Hussein Onn Malaysia, Research Centre for Soft Soil (RECESS), Institute of Integrate d Engineering, 86400 Parit Raja, Johor, Malaysia
Download PDF Download RIS Download Bibtex

Abstract

Photoactive nanofilled nematic is proposed. Stable three-component photoresponsive nanocomposite was prepared from photo-insensitive nanofilled nematic by inclusion of 3 wt.% azobenzene-containing photoactive mesogen 4-(4′-ethoxyphenylazo)phenyl hexanoate (EPH). The host nanofilled nematic was produced from the room-temperature nematic liquid crystal 4-n-heptyl cyanobiphenyl (7CB) and 3 wt.% filler of Aerosil 300 hydrophilic silica nanospheres of size 7 nm. Apparent effect of stimulation with a relatively weak continuous illumination by UV light (375 nm wavelength) takes place for both the alternating-current electric field-dependent optical transmittance and the electro-optic amplitude-frequency modulation by thin films (25 µm thick) of the EPH/aerosil/7CB nanocomposite. The light-stimulated electro-optics of EPH-doped aerosil/7CB films and the corresponding reversible light control are achieved through trans-cis-trans photoisomerization of the photoactive agent EPH. As such, the initial electro-optical response of the studied photoactive nanocomposites is recovered with continuous blue-light illumination. The examined EPH/aerosil/7CB nanocomposites exhibit photo-controllable electro-optical response that is of practical interest.

Go to article

Authors and Affiliations

Georgi B. Hadjichristov
Yordan G. Marinov
Alexander G. Petrov
Subbarao Krishna Prasad
Download PDF Download RIS Download Bibtex

Abstract

The dispersion of nanoparticles in the host matrix is a novel approach to enhance the thermoelectric performance. In this work, we incorporate the TiC (x = 0, 1 and 2 wt.%) nanoparticles into a p-type Bi0.5Sb1.5Te3 matrix, and their effects on microstructure and thermoelectric properties were systematically investigated. The existence of TiC contents in a base matrix was confirmed by energy dispersive X-ray spectroscopy analysis. The grain size decreases with increasing the addition of TiC content due to grain boundary hardening where the dispersed nanoparticles acted as pinning points in the entire matrix. The electrical conductivity significantly decreased and the Seebeck coefficient was slightly enhanced, which attributes to the decrease in carrier concentration by the addition of TiC content. Meanwhile, the lowest thermal conductivity of 0.97 W/mK for the 2 wt.% TiC nanocomposite sample, which is ~16% lower than 0 wt.% TiC sample. The maximum figure of merit of 0.90 was obtained at 350 K for the 0 wt.% TiC sample due to high electrical conductivity. Moreover, the Vickers hardness was improved with increase the addition of TiC contents.

Go to article

Authors and Affiliations

Cheenepalli Nagarjuna
Babu Madavali
Myeong-Won Lee
Suk-Min Yoon
Soon-Jik Hong
Download PDF Download RIS Download Bibtex

Abstract

Y2O3-MgO nanocomposites are one of the most promising materials for hypersonic infrared windows and domes due to their excellent optical transmittance and mechanical properties. In this study, influence of the calcination temperature of Y2O3-MgO nanopowders on the microstructure, IR transmittance, and hardness of Y2O3-MgO nanocomposites was investigated. It was found that the calcination temperature is related to the presence of residual intergranular pores and grain size after spark plasma sintering. The nanopowders calcined at 1000°C exhibits the highest infrared transmittance (82.3% at 5.3 μm) and hardness (9.99 GPa). These findings indicated that initial particle size and distribution of the nanopowders are important factors determining the optical and mechanical performances of Y2O3-MgO nanocomposites.

Go to article

Authors and Affiliations

S.-M. Yong
D.H. Choi
K. Lee
S.-Y. Ko
D.-I. Cheong
Download PDF Download RIS Download Bibtex

Abstract

The present work comprises the development of Al6061/nano Al2O3 composites with 0 to 4 weight percent in steps of 0.5 wt. % of nano alumina particles by using ultrasonic assisted stir casting. Casted samples were subjected to heat treatment and hot forging. Further forged and heat-treated gear blanks of nano Al2O3 (0 to 3.0 weight %) reinforced nanocomposites were machined to make spur gears for the wear test. The results have shown that nano Al2O3 reinforcement in the Al6061 matrix with heat treatment and forging improves the hardness and compressive strength up to 3.5 wt. %, after that, it starts decreasing because of the agglomeration of nano alumina particles. SEM results reveal grain refinement of the pure alloy after reinforcement. Removal of porosity and voids observed after forging operation. Wear resistance increasing with incorporation of Al2O3 nanoparticles in base alloy, reinforcement wt. %, precipitation hardening and hot forging also improves wear resistance and mechanical properties. These composites have widespread applications in gear, brake discs, crankshaft, clutch plates, pistons, and other components of automobiles and aircraft structures.
Go to article

Authors and Affiliations

Rajesh Purohit
1
M.M.U. Qureshi
1
Ashish Kumar
1
ORCID: ORCID
Abhishek Mishra
1
R.S. Rana
1

  1. Mechanical Engineering Department, MANIT, Bhopal, India-462003

This page uses 'cookies'. Learn more